Zhang Xinshu, Carbin Tyler, Culver Adrian B, Du Kai, Wang Kefeng, Cheong Sang-Wook, Roy Rahul, Kogar Anshul
Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
Nat Mater. 2024 Jun;23(6):790-795. doi: 10.1038/s41563-024-01852-w. Epub 2024 Apr 1.
In a solid, the electronic subsystem can exhibit incipient order with lower point group symmetry than the crystal lattice. Ultrafast external fields that couple exclusively to electronic order parameters have rarely been investigated, however, despite their potential importance in inducing exotic effects. Here we show that when inversion symmetry is broken by the antiferromagnetic order in CrO, transmitting a linearly polarized light pulse through the crystal gives rise to an in-plane rotational symmetry-breaking (from C to C) via optical rectification. Using interferometric time-resolved second harmonic generation, we show that the ultrafast timescale of the symmetry reduction is indicative of a purely electronic response; the underlying spin and crystal structures remain unaffected. The symmetry-broken state exhibits a dipole moment, and its polar axis can be controlled with the incident light. Our results establish a coherent nonlinear optical protocol by which to break electronic symmetries and produce unconventional electronic effects in solids.
在固体中,电子子系统可以呈现出比晶格点群对称性更低的初始有序状态。然而,尽管超快外场仅与电子序参量耦合在诱导奇异效应方面具有潜在重要性,但对此的研究却很少。在此我们表明,当CrO中的反铁磁序打破反演对称性时,通过晶体传输线性偏振光脉冲会通过光学整流产生面内旋转对称性破缺(从C到C)。利用干涉时间分辨二次谐波产生,我们表明对称性降低的超快时间尺度表明这是一种纯电子响应;其潜在的自旋和晶体结构保持不变。对称性破缺态表现出偶极矩,并且其极轴可以由入射光控制。我们的结果建立了一种相干非线性光学协议,通过该协议可以打破固体中的电子对称性并产生非常规电子效应。