Higuchi Takuya, Kuwata-Gonokami Makoto
Department of Physics, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Photon Science Center, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0086, Japan.
Nat Commun. 2016 Feb 25;7:10720. doi: 10.1038/ncomms10720.
The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected.
反铁磁畴内部不存在净磁化强度,这使得控制其空间分布颇具挑战性。在此,我们通过实验展示了一种控制MnF₂中反铁磁畴分布的光学方法。晶体对称性的降低可将一个序参量与非共轭外部刺激耦合起来。在MnF₂的情形中,时间反演对称性在宏观上被打破,这反映了两个磁亚晶格的不同取向。因此,在外部磁场作用下,低于其反铁磁转变温度时,它在两个正交线性偏振之间呈现出不同的吸收系数。在此条件下,用线偏振激光照射会通过加热选择性地破坏特定反铁磁序的形成。结果,在激光光斑内部另一种反铁磁序占优势,实现了反铁磁序的空间局域选择。预计该方法可应用于控制反铁磁畴边界处的界面态、交换偏置以及自旋电流的控制。