McFadden Conor, Marin Zach, Chen Bingying, Daetwyler Stephan, Wang Xiaoding, Rajendran Divya, Dean Kevin M, Fiolka Reto
Lyda Hill Department for Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines BLVD, Dallas, TX 75390, USA.
Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines BLVD, Dallas, TX 75390, USA.
bioRxiv. 2024 Mar 22:2024.03.21.586191. doi: 10.1101/2024.03.21.586191.
Adaptive optics (AO) can restore diffraction limited performance when imaging beyond superficial cell layers and , and as such is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both the illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.
自适应光学(AO)在对表层细胞层以外的区域进行成像时能够恢复衍射极限性能,因此对于诸如光片荧光显微镜(LSFM)等先进的三维显微镜方法具有重要意义。在典型的LSFM系统中,照明路径和检测路径是分开的,并且会受到不同的光学像差影响。为了实现最佳的显微镜性能,有必要在两个光路中检测并校正这些像差,这就导致显微镜系统变得复杂。在此,我们表明,在一种采用单个主物镜的LSFM——斜平面显微镜(OPM)中,同一可变形镜能够校正照明和荧光检测。除了降低复杂性之外,我们还表明OPM中的AO还能恢复光片和焦平面的相对对准,并且投影成像模式能够以无传感器AO形式稳定并改善波前校正。我们通过对荧光纳米球进行AO的OPM演示,并对嵌入玻璃毛细管中的斑马鱼胚胎中的脉管系统和癌细胞进行成像,恢复了衍射极限分辨率,并将信号强度提高了两倍。