Suppr超能文献

采用具有可切换物镜的介观扫描斜平面显微镜进行宽视野体积成像。

Wide field-of-view volumetric imaging by a mesoscopic scanning oblique plane microscopy with switchable objective lenses.

作者信息

Shao Wenjun, Kilic Kivilcim, Yin Wenqing, Wirak Gregory, Qin Xiaodan, Feng Hui, Boas David, Gabel Christopher V, Yi Ji

机构信息

Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.

Neurophotonics Center, Boston University, Boston, MA, USA.

出版信息

Quant Imaging Med Surg. 2021 Mar;11(3):983-997. doi: 10.21037/qims-20-806.

Abstract

BACKGROUND

Conventional light sheet fluorescence microscopy (LSFM), or selective plane illumination microscopy (SPIM), enables high-resolution 3D imaging over a large volume by using two orthogonally aligned objective lenses to decouple excitation and emission. The recent development of oblique plane microscopy (OPM) simplifies LSFM design with only one single objective lens, by using off-axis excitation and remote focusing. However, most reports on OPM have a limited microscopic field of view (FOV), typically within 1×1 mm. Our goal is to overcome the limitation with a new variant of OPM to achieve a mesoscopic FOV.

METHODS

We implemented an optical design of mesoscopic scanning OPM to allow the use of low numerical aperture (NA) objective lenses. The angle of the intermediate image before the remote focusing system was increased by a demagnification under Scheimpflug condition such that the light collecting efficiency in the remote focusing system was significantly improved. A telescope composed of cylindrical lenses was used to correct the distorted image caused by the demagnification design. We characterized the 3D resolutions and imaging volume by imaging fluorescent microspheres, and demonstrated the volumetric imaging on intact whole zebrafish larvae, mouse cortex, and multiple ().

RESULTS

We demonstrate a mesoscopic FOV up to ~6×5×0.6 mm volumetric imaging, the largest reported FOV by OPM so far. The angle of the intermediate image plane is independent of the magnification as long as the size of the pupil aperture of the objectives is the same. As a result, the system is highly versatile, allowing simple switching between different objective lenses with low (10×, NA 0.3) and median NA (20×, NA 0.5). Detailed microvasculature in zebrafish larvae, mouse cortex, and neurons in C. elegans are clearly visualized in 3D.

CONCLUSIONS

The proposed mesoscopic scanning OPM allows using low NA objectives such that centimeter-level FOV volumetric imaging can be achieved. With the extended FOV, simple sample mounting protocol, and the versatility of changeable FOVs/resolutions, our system will be ready for the varieties of applications requiring in vivo volumetric imaging over large length scales.

摘要

背景

传统的光片荧光显微镜(LSFM),即选择性平面照明显微镜(SPIM),通过使用两个正交排列的物镜来分离激发光和发射光,从而能够在大体积范围内进行高分辨率三维成像。斜平面显微镜(OPM)的最新发展通过使用离轴激发和远程聚焦,仅用一个物镜简化了LSFM的设计。然而,大多数关于OPM的报道其微观视野(FOV)有限,通常在1×1毫米范围内。我们的目标是通过一种新型的OPM变体克服这一限制,以实现介观视野。

方法

我们实施了介观扫描OPM的光学设计,以允许使用低数值孔径(NA)的物镜。在谢宾夫条件下,通过缩小倍率增加远程聚焦系统前中间图像的角度,从而显著提高远程聚焦系统中的光收集效率。使用由柱面透镜组成的望远镜来校正由缩小倍率设计引起的图像失真。我们通过对荧光微球成像来表征三维分辨率和成像体积,并在完整的斑马鱼幼虫、小鼠皮层和多个(此处原文似乎不完整)上展示了体积成像。

结果

我们展示了高达约6×5×0.6毫米体积成像的介观视野,这是迄今为止OPM报道的最大视野。只要物镜的瞳孔孔径大小相同,中间图像平面的角度就与放大倍率无关。因此,该系统具有高度的通用性,允许在低(10×,NA 0.3)和中等NA(20×,NA 0.5)的不同物镜之间轻松切换。斑马鱼幼虫、小鼠皮层和秀丽隐杆线虫神经元中的详细微血管在三维中清晰可见。

结论

所提出的介观扫描OPM允许使用低NA物镜,从而可以实现厘米级视野的体积成像。凭借扩展的视野、简单的样品安装协议以及可变视野/分辨率的通用性,我们的系统将适用于各种需要在大长度尺度上进行体内体积成像的应用。

相似文献

2
Mesoscopic oblique plane microscopy with a diffractive light-sheet for large-scale 4D cellular resolution imaging.
Optica. 2022 Dec 20;9(12):1374-1385. doi: 10.1364/optica.471101. Epub 2022 Dec 8.
3
Full-aperture extended-depth oblique plane microscopy through dynamic remote focusing.
J Biomed Opt. 2024 Mar;29(3):036502. doi: 10.1117/1.JBO.29.3.036502. Epub 2024 Mar 21.
4
Mesoscopic Oblique Plane Microscopy via Light-sheet Mirroring.
bioRxiv. 2023 Aug 11:2023.08.10.552834. doi: 10.1101/2023.08.10.552834.
5
Increasing the field-of-view in oblique plane microscopy via optical tiling.
Biomed Opt Express. 2022 Oct 4;13(11):5616-5627. doi: 10.1364/BOE.467969. eCollection 2022 Nov 1.
9
Extended depth-of-field light-sheet microscopy improves imaging of large volumes at high numerical aperture.
Appl Phys Lett. 2022 Oct 17;121(16):163701. doi: 10.1063/5.0101426. Epub 2022 Oct 20.
10
Adaptive Optics in an Oblique Plane Microscope.
bioRxiv. 2024 Mar 22:2024.03.21.586191. doi: 10.1101/2024.03.21.586191.

引用本文的文献

1
Recent advances in oblique plane microscopy.
Nanophotonics. 2023 Apr 20;12(13):2317-2334. doi: 10.1515/nanoph-2023-0002. eCollection 2023 Jun.
2
Mesoscopic oblique plane microscopy with a diffractive light-sheet for large-scale 4D cellular resolution imaging.
Optica. 2022 Dec 20;9(12):1374-1385. doi: 10.1364/optica.471101. Epub 2022 Dec 8.
3
Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity.
Nat Commun. 2023 Dec 4;14(1):8019. doi: 10.1038/s41467-023-43741-x.
4
Increasing the field-of-view in oblique plane microscopy via optical tiling.
Biomed Opt Express. 2022 Oct 4;13(11):5616-5627. doi: 10.1364/BOE.467969. eCollection 2022 Nov 1.
5
Review of data processing of functional optical microscopy for neuroscience.
Neurophotonics. 2022 Oct;9(4):041402. doi: 10.1117/1.NPh.9.4.041402. Epub 2022 Aug 4.
6
Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy.
Biomed Opt Express. 2022 May 24;13(6):3576-3592. doi: 10.1364/BOE.457408. eCollection 2022 Jun 1.
7
Scattering oblique plane microscopy for blood cell imaging.
Biomed Opt Express. 2021 Apr 5;12(5):2575-2585. doi: 10.1364/BOE.422993. eCollection 2021 May 1.

本文引用的文献

1
A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues.
Nat Methods. 2022 May;19(5):613-619. doi: 10.1038/s41592-022-01468-5. Epub 2022 May 11.
2
Performance tradeoffs for single- and dual-objective open-top light-sheet microscope designs: a simulation-based analysis.
Biomed Opt Express. 2020 Jul 24;11(8):4627-4650. doi: 10.1364/BOE.397052. eCollection 2020 Aug 1.
4
Axial plane single-molecule super-resolution microscopy of whole cells.
Biomed Opt Express. 2019 Dec 23;11(1):461-479. doi: 10.1364/BOE.377890. eCollection 2020 Jan 1.
5
Volumetric fluorescein angiography (vFA) by oblique scanning laser ophthalmoscopy in mouse retina at 200 B-scans per second.
Biomed Opt Express. 2019 Aug 30;10(9):4907-4918. doi: 10.1364/BOE.10.004907. eCollection 2019 Sep 1.
6
Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0.
Nat Methods. 2019 Oct;16(10):1054-1062. doi: 10.1038/s41592-019-0579-4. Epub 2019 Sep 27.
7
Oblique-plane single-molecule localization microscopy for tissues and small intact animals.
Nat Methods. 2019 Sep;16(9):853-857. doi: 10.1038/s41592-019-0510-z. Epub 2019 Aug 19.
9
Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution.
Nat Methods. 2019 Jun;16(6):501-504. doi: 10.1038/s41592-019-0401-3. Epub 2019 May 6.
10
Tilt-invariant scanned oblique plane illumination microscopy for large-scale volumetric imaging.
Opt Lett. 2019 Apr 1;44(7):1706-1709. doi: 10.1364/OL.44.001706.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验