Mosharov Eugene V, Rosenberg Ayelet M, Monzel Anna S, Osto Corey A, Stiles Linsey, Rosoklija Gorazd B, Dwork Andrew J, Bindra Snehal, Zhang Ya, Fujita Masashi, Mariani Madeline B, Bakalian Mihran, Sulzer David, De Jager Philip L, Menon Vilas, Shirihai Orian S, Mann J John, Underwood Mark, Boldrini Maura, Thiebaut de Schotten Michel, Picard Martin
Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
New York State Psychiatric Institute, New York, NY, USA.
Res Sq. 2024 Mar 22:rs.3.rs-4047706. doi: 10.21203/rs.3.rs-4047706/v1.
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders, underscoring the need to define the brain's molecular energetic landscape. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
线粒体氧化磷酸化(OxPhos)为大脑活动提供能量,线粒体缺陷与神经退行性疾病和神经精神疾病相关,这凸显了定义大脑分子能量格局的必要性。为了弥合认知神经科学和细胞生物学尺度之间的差距,我们开发了一种物理体素化方法,将冷冻的人类冠状半球切片划分为703个体素,其分辨率与神经成像相当(3×3×3毫米)。在每个皮质和皮质下脑体素中,我们分析了线粒体表型,包括氧化磷酸化酶活性、线粒体DNA和体积密度以及线粒体特异性呼吸能力。我们发现,人类大脑包含由拓扑结构和细胞类型驱动的多种线粒体表型。与白质相比,灰质中的线粒体多50%以上。我们还发现,灰质中更丰富的线粒体在能量转换方面也进行了生化优化,特别是在最近进化的皮质脑区。将这些数据扩展到整个大脑,我们创建了一个整合多种神经成像模式的反向线性回归模型,从而生成了全脑线粒体分布和特化图谱,该图谱可预测同一供体大脑独立脑区的线粒体特征。这种新方法以及由此产生的线粒体表型的线粒体脑图谱为探索支持正常脑功能的分子能量格局、将其与神经成像数据相关联以及确定与神经精神疾病和神经退行性疾病相关的区域化脑过程的亚细胞基础提供了基础。