Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France.
Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France.
J Virol. 2024 May 14;98(5):e0169323. doi: 10.1128/jvi.01693-23. Epub 2024 Apr 2.
In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.
在 COVID-19 大流行初期,我们急需采取对策,因此我们的目标是利用高效麻疹疫苗作为载体,开发一种复制性病毒疫苗,这是一种具有临床概念验证的有前途的技术。在此基础上,我们成功地进行了麻疹病毒(MV)为载体的 SARS-CoV 候选疫苗的临床前开发,评估了几种表达经过密码子优化的 SARS-CoV-2 刺突糖蛋白的重组 MV。候选疫苗 V591 通过在 HR1 铰链环中引入两个脯氨酸残基来稳定前融合刺突蛋白,同时删除 S1/S2 弗林裂解位点,并进一步失活内质网回收信号,在小鼠中最有效地诱导中和抗体。单次免疫后,V591 诱导的中和效价与恢复期患者血清中观察到的相似。细胞免疫反应被证实为 Th1 偏向。V591 在小鼠模型中提供了针对 SARS-CoV-2 挑战的长期保护,显著降低了病毒 RNA 载量,没有检测到可检测的传染性病毒载量,并且肺部病变减少。V591 在已建立的非人灵长类动物疾病模型中也具有疗效(请参见 Nambulli 等人的相关文章 [S. Nambulli、N. Escriou、L. J. Rennick、M. J. Demers、N. L. Tilston-Lunel 等,J Virol 98:e01762-23,2024,https://doi.org/10.1128/jvi.01762-23])。因此,V591 于 2020 年 8 月进入 I/II 期临床试验。令人惊讶的是,在人类中发现的低免疫原性(O. Launay、C. Artaud、M. Lachâtre、M. Ait-Ahmed、J. Klein 等,eBioMedicine 75:103810,2022,https://doi.org/10.1016/j.ebiom.2021.103810)表明,对预先存在的抗麻疹免疫力的抵抗或敏感性的潜在机制尚不清楚。在这里讨论了不同的假设,这对于进一步开发麻疹载体疫苗平台非常重要。
SARS-CoV-2 于 2019 年底出现,并迅速在全球范围内传播,引发了 COVID-19 大流行,这迫切需要疫苗。我们利用高效麻疹疫苗作为载体开发了一种候选疫苗,该技术在针对其他病原体的临床试验中已被证明非常有前途。我们在此报告并在 Nambulli 等人的相关文章中(J Virol 98:e01762-23,2024,https://doi.org/10.1128/jvi.01762-23)报告了 V591 候选疫苗的设计、选择和临床前疗效,该疫苗于 2020 年 8 月进入临床开发,距离 SARS-CoV-2 在武汉被发现仅 7 个月。这些针对麻疹载体 COVID-19 疫苗的独特人体试验揭示了疫苗的免疫原性不足,这可能是由于以前接触过小儿麻疹疫苗。这三项在小鼠、灵长类动物和人类中的研究为麻疹载体疫苗平台提供了独特的见解,提出了替代临床前模型的潜在局限性,并呼吁进一步改进该平台。