Suppr超能文献

揭示 FLT3-ITD AML 的信号转导网络可提高药物敏感性预测。

Unveiling the signaling network of FLT3-ITD AML improves drug sensitivity prediction.

机构信息

Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy.

Department of Biology, University of Rome Tor Vergata, Rome, Italy.

出版信息

Elife. 2024 Apr 2;12:RP90532. doi: 10.7554/eLife.90532.

Abstract

Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.

摘要

目前,癌症患者特异性治疗的确定主要是通过个性化基因组分析来提供信息。在急性髓细胞白血病 (AML) 的情况下,在一部分携带有 FLT3 基因酪氨酸激酶结构域的非典型内部串联重复 (ITD) 的患者中,患者药物治疗匹配失败。为了解决这一未满足的医疗需求,我们在这里开发了一种基于系统的策略,该策略整合了关键信号通路的多参数分析,以及使用基于布尔的形式主义的患者特异性基因组和转录组数据与先验信号网络。通过这种方法,我们得出了描述 AML FLT3-ITD 阳性细胞系和患者信号景观的个性化预测模型。这些模型使我们能够深入了解耐药机制,并为组合治疗提供新的机会。有趣的是,我们的分析表明,JNK 激酶途径通过细胞周期调控在 FLT3-ITD 细胞中酪氨酸激酶抑制剂的反应中起着至关重要的作用。最后,我们的工作表明,患者特异性逻辑模型有可能为精准医疗方法提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5299/10987088/54a0e21ce6b4/elife-90532-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验