Mildau Kevin, Ehlers Henry, Oesterle Ian, Pristner Manuel, Warth Benedikt, Doppler Maria, Bueschl Christoph, Zanghellini Jürgen, van der Hooft Justin J J
Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria.
Austrian Centre of Industrial Biotechnology (ACIB GmbH), 8010 Graz, Austria.
Anal Chem. 2024 Apr 16;96(15):5798-5806. doi: 10.1021/acs.analchem.3c04444. Epub 2024 Apr 2.
Untargeted metabolomics promises comprehensive characterization of small molecules in biological samples. However, the field is hampered by low annotation rates and abstract spectral data. Despite recent advances in computational metabolomics, manual annotations and manual confirmation of in-silico annotations remain important in the field. Here, exploratory data analysis methods for mass spectral data provide overviews, prioritization, and structural hypothesis starting points to researchers facing large quantities of spectral data. In this research, we propose a fluid means of dealing with mass spectral data using specXplore, an interactive Python dashboard providing interactive and complementary visualizations facilitating mass spectral similarity matrix exploration. Specifically, specXplore provides a two-dimensional t-distributed stochastic neighbor embedding embedding as a jumping board for local connectivity exploration using complementary interactive visualizations in the form of partial network drawings, similarity heatmaps, and fragmentation overview maps. SpecXplore makes use of state-of-the-art ms2deepscore pairwise spectral similarities as a quantitative backbone while allowing fast changes of threshold and connectivity limitation settings, providing flexibility in adjusting settings to suit the localized node environment being explored. We believe that specXplore can become an integral part of mass spectral data exploration efforts and assist users in the generation of structural hypotheses for compounds of interest.
非靶向代谢组学有望全面表征生物样品中的小分子。然而,该领域受到注释率低和光谱数据抽象的阻碍。尽管计算代谢组学最近取得了进展,但手动注释和对计算机模拟注释的手动确认在该领域仍然很重要。在这里,质谱数据的探索性数据分析方法为面对大量光谱数据的研究人员提供了概述、优先级排序和结构假设起点。在本研究中,我们提出了一种使用specXplore处理质谱数据的灵活方法,specXplore是一个交互式Python仪表板,提供交互式和互补的可视化,便于探索质谱相似性矩阵。具体来说,specXplore提供二维t分布随机邻域嵌入,作为使用局部网络图、相似性热图和碎片概述图等互补交互式可视化进行局部连通性探索的跳板。SpecXplore利用最新的ms2deepscore成对光谱相似性作为定量主干,同时允许快速更改阈值和连通性限制设置,在调整设置以适应正在探索的局部节点环境方面提供了灵活性。我们相信,specXplore可以成为质谱数据探索工作的一个组成部分,并帮助用户生成感兴趣化合物的结构假设。