Suppr超能文献

基于深度学习和数据增强的绝经后妇女磁共振图像下肢肌肉自动分割。

Automatic segmentation of lower limb muscles from MR images of post-menopausal women based on deep learning and data augmentation.

机构信息

Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom.

INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom.

出版信息

PLoS One. 2024 Apr 2;19(4):e0299099. doi: 10.1371/journal.pone.0299099. eCollection 2024.

Abstract

Individual muscle segmentation is the process of partitioning medical images into regions representing each muscle. It can be used to isolate spatially structured quantitative muscle characteristics, such as volume, geometry, and the level of fat infiltration. These features are pivotal to measuring the state of muscle functional health and in tracking the response of the body to musculoskeletal and neuromusculoskeletal disorders. The gold standard approach to perform muscle segmentation requires manual processing of large numbers of images and is associated with significant operator repeatability issues and high time requirements. Deep learning-based techniques have been recently suggested to be capable of automating the process, which would catalyse research into the effects of musculoskeletal disorders on the muscular system. In this study, three convolutional neural networks were explored in their capacity to automatically segment twenty-three lower limb muscles from the hips, thigh, and calves from magnetic resonance images. The three neural networks (UNet, Attention UNet, and a novel Spatial Channel UNet) were trained independently with augmented images to segment 6 subjects and were able to segment the muscles with an average Relative Volume Error (RVE) between -8.6% and 2.9%, average Dice Similarity Coefficient (DSC) between 0.70 and 0.84, and average Hausdorff Distance (HD) between 12.2 and 46.5 mm, with performance dependent on both the subject and the network used. The trained convolutional neural networks designed, and data used in this study are openly available for use, either through re-training for other medical images, or application to automatically segment new T1-weighted lower limb magnetic resonance images captured with similar acquisition parameters.

摘要

个体肌肉分割是将医学图像分割成代表每个肌肉的区域的过程。它可用于分离具有空间结构的定量肌肉特征,如体积、几何形状和脂肪浸润程度。这些特征对于测量肌肉功能健康状态以及跟踪身体对肌肉骨骼和神经肌肉骨骼疾病的反应至关重要。执行肌肉分割的金标准方法需要对大量图像进行手动处理,并且存在显著的操作者重复性问题和高时间要求。最近提出的基于深度学习的技术能够实现自动化处理,这将促进对肌肉骨骼疾病对肌肉系统影响的研究。在这项研究中,探索了三种卷积神经网络在从髋关节、大腿和小腿的磁共振图像中自动分割二十三条下肢肌肉的能力。这三个神经网络(UNet、注意力 UNet 和新型空间通道 UNet)分别使用增强图像进行独立训练,以分割 6 个对象,并能够以平均相对体积误差(RVE)在-8.6%至 2.9%之间、平均骰子相似系数(DSC)在 0.70 至 0.84 之间和平均 Hausdorff 距离(HD)在 12.2 至 46.5 毫米之间分割肌肉,其性能取决于对象和使用的网络。本研究设计的训练卷积神经网络和使用的数据可公开使用,无论是通过重新训练其他医学图像,还是应用于自动分割使用类似采集参数捕获的新 T1 加权下肢磁共振图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ca/10986986/08320788a114/pone.0299099.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验