Suppr超能文献

RBS-Net:基于区域、边界和结构损失的多层特征学习的海马体分割。

RBS-Net: Hippocampus segmentation using multi-layer feature learning with the region, boundary and structure loss.

机构信息

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.

出版信息

Comput Biol Med. 2023 Jun;160:106953. doi: 10.1016/j.compbiomed.2023.106953. Epub 2023 Apr 20.

Abstract

Hippocampus has great influence over the Alzheimer's disease (AD) research because of its essential role as a biomarker in the human brain. Thus the performance of hippocampus segmentation influences the development of clinical research for brain disorders. Deep learning using U-net-like networks becomes prevalent in hippocampus segmentation on Magnetic Resonance Imaging (MRI) due to its efficiency and accuracy. However, current methods lose sufficient detailed information during pooling, which hinders the segmentation results. And weak supervision on the details like edges or positions results in fuzzy and coarse boundary segmentation, causing great differences between the segmentation and ground-truth. In view of these drawbacks, we propose a Region-Boundary and Structure Net (RBS-Net), which consists of a primary net and an auxiliary net. (1) Our primary net focuses on the region distribution of hippocampus and introduces a distance map for boundary supervision. Furthermore the primary net adds a multi-layer feature learning module to compensate the information loss during pooling and strengthen the differences between the foreground and background, improving the region and boundary segmentation. (2) The auxiliary net concentrates on the structure similarity and also utilizes the multi-layer feature learning module, and this parallel task can refine encoders by similarizing the structure of the segmentation and ground-truth. We train and test our network using 5-fold cross-validation on HarP, a public available hippocampus dataset. Experimental results demonstrate that our proposed RBS-Net achieves a Dice of 89.76% in average, outperforming several state-of-the-art hippocampus segmentation methods. Furthermore, in few shot circumstances, our proposed RBS-Net achieves better results in terms of a comprehensive evaluation compared to several state-of-the-art deep learning-based methods. Finally we can observe that visual segmentation results for the boundary and detailed regions are improved by our proposed RBS-Net.

摘要

海马体因其在人类大脑中作为生物标志物的重要作用而对阿尔茨海默病(AD)研究产生了巨大影响。因此,海马体分割的性能影响着大脑疾病临床研究的发展。基于 U-net 网络的深度学习由于其效率和准确性,在磁共振成像(MRI)上的海马体分割中变得流行。然而,当前的方法在池化过程中会丢失足够的详细信息,从而阻碍了分割结果。对边缘或位置等细节的弱监督导致边界分割模糊和粗糙,导致分割和真实边界之间存在较大差异。针对这些缺点,我们提出了一种区域边界和结构网络(RBS-Net),它由一个主网络和一个辅助网络组成。(1)我们的主网络关注海马体的区域分布,并引入距离图进行边界监督。此外,主网络添加了一个多层特征学习模块,以补偿池化过程中的信息丢失,并增强前景和背景之间的差异,从而提高区域和边界分割。(2)辅助网络专注于结构相似性,也利用多层特征学习模块,这个并行任务可以通过相似化分割和真实边界的结构来细化编码器。我们在 HarP 上进行了五折交叉验证,使用该公共海马体数据集对我们的网络进行训练和测试。实验结果表明,我们提出的 RBS-Net 在平均水平上达到了 89.76%的 Dice 值,优于几种最先进的海马体分割方法。此外,在少数情况下,与几种最先进的基于深度学习的方法相比,我们提出的 RBS-Net 在综合评估方面取得了更好的结果。最后,我们可以观察到,我们提出的 RBS-Net 改善了边界和详细区域的视觉分割结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验