Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
J Phys Chem B. 2024 Apr 11;128(14):3350-3359. doi: 10.1021/acs.jpcb.3c08194. Epub 2024 Apr 2.
Secondary coordination sphere (SCS) interactions have been shown to play important roles in tuning reduction potentials and electron transfer (ET) properties of the Type 1 copper proteins, but the precise roles of these interactions are not fully understood. In this work, we examined the influence of F114P, F114N, and N47S mutations in the SCS on the electronic structure of the T1 copper center in azurin (Az) by studying the hyperfine couplings of (i) histidine remote N nitrogens and (ii) the amide N using the two-dimensional (2D) pulsed electron paramagnetic resonance (EPR) technique HYSCORE (hyperfine sublevel correlation) combined with quantum mechanics/molecular mechanics (QM/MM) and DLPNO-CCSD calculations. Our data show that some components of hyperfine tensor and isotropic coupling in N47SAz and F114PAz (but not F114NAz) deviate by up to ∼±20% from WTAz, indicating that these mutations significantly influence the spin density distribution between the Cu site and coordinating ligands. Furthermore, our calculations support the assignment of N to the backbone amide of residue 47 (both in Asn and Ser variants). Since the spin density distributions play an important role in tuning the covalency of the Cu-Scys bond of Type 1 copper center that has been shown to be crucial in controlling the reduction potentials, this study provides additional insights into the electron spin factor in tuning the reduction potentials and ET properties.
次级配位域(SCS)相互作用已被证明在调节 1 型铜蛋白的还原电位和电子转移(ET)性质方面起着重要作用,但这些相互作用的确切作用尚不完全清楚。在这项工作中,我们通过研究(i)组氨酸远程氮原子和(ii)酰胺 N 的超精细耦合,研究了 SCS 中 F114P、F114N 和 N47S 突变对蓝铜蛋白(Az)中 T1 铜中心电子结构的影响,使用二维(2D)脉冲电子顺磁共振(EPR)技术 HYSCORE(超精细亚层相关)结合量子力学/分子力学(QM/MM)和 DLPNO-CCSD 计算。我们的数据表明,N47SAz 和 F114PAz(但不是 F114NAz)中一些超精细张量和各向同性耦合分量的偏差高达约±20%,这表明这些突变显著影响了 Cu 位点和配位配体之间的自旋密度分布。此外,我们的计算支持将 N 分配给残基 47 的酰胺氮(Asn 和 Ser 变体)。由于自旋密度分布在调节 1 型铜中心的 Cu-Scys 键的共价性方面起着重要作用,这已被证明对控制还原电位至关重要,因此这项研究为调节还原电位和 ET 性质的电子自旋因素提供了更多的见解。