Suppr超能文献

血管周围腔壁的裂隙充当阀门,以产生脑脊液的定向流动:环向应力模型。

Gaps in the wall of a perivascular space act as valves to produce a directed flow of cerebrospinal fluid: a hoop-stress model.

机构信息

Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA.

出版信息

J R Soc Interface. 2024 Apr;21(213):20230659. doi: 10.1098/rsif.2023.0659. Epub 2024 Apr 3.

Abstract

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.

摘要

脑脊液(CSF)沿着血管周围间隙(PVS)流动是大脑清除代谢废物系统的重要组成部分。星形胶质细胞足突围绕穿透性动脉的 PVS,将其与脑细胞外间隙分隔开。星形胶质细胞足突之间的间隙可能为跨壁流体运输提供低阻力途径。最近的研究表明,星形胶质细胞足突充当着阀的作用,通过响应压力变化改变间隙大小来纠正 CSF 流动,从而产生在软脑膜 PVS 中观察到的净流动。在这项研究中,我们基于 PVS 的三个特征来量化这种整流作用:准圆形几何形状、可变形的足突壁和内部的压力振荡。我们提供了一个基于薄壳环向应力近似的分析模型,并预测了约 0.4 的泵送效率,这将对观察到的流动有显著贡献。当我们将细胞外间隙(ECS)的流动阻力添加到模型中时,我们发现与清醒状态相比,由于 ECS 渗透性(流动阻力降低)增加,睡眠期间的净流量增加。我们通过三维流固相互作用模拟验证了我们的分析模型。

相似文献

4
Hydraulic resistance of periarterial spaces in the brain.脑动脉周围间隙的液压阻力。
Fluids Barriers CNS. 2019 Jun 20;16(1):19. doi: 10.1186/s12987-019-0140-y.
6
A brain-wide solute transport model of the glymphatic system.脑内全域溶质转运模型的糖酵解系统。
J R Soc Interface. 2024 Oct;21(219):20240369. doi: 10.1098/rsif.2024.0369. Epub 2024 Oct 23.

本文引用的文献

2
preCICE v2: A sustainable and user-friendly coupling library.preCICE v2:一个可持续且用户友好的耦合库。
Open Res Eur. 2022 Sep 30;2:51. doi: 10.12688/openreseurope.14445.2. eCollection 2022.
5
Glymphatic influx and clearance are accelerated by neurovascular coupling.糖酵解流入和清除通过神经血管耦联加速。
Nat Neurosci. 2023 Jun;26(6):1042-1053. doi: 10.1038/s41593-023-01327-2. Epub 2023 Jun 1.
8
The glymphatic system: Current understanding and modeling.类淋巴系统:当前的认识与建模
iScience. 2022 Aug 20;25(9):104987. doi: 10.1016/j.isci.2022.104987. eCollection 2022 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验