Sol Jérôme, Prod'homme Hugo, Le Magoarou Luc, Del Hougne Philipp
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000, Rennes, France.
Nat Commun. 2024 Apr 2;15(1):2841. doi: 10.1038/s41467-024-46916-2.
Metasurface-programmable radio environments are considered a key ingredient of next-generation wireless networks. Yet, identifying a metasurface configuration that yields a desired wireless functionality in an unknown complex environment was so far only achieved with closed-loop iterative feedback schemes. Here, we introduce open-loop wave control in metasurface-programmable complex media by estimating the parameters of a compact physics-based forward model. Our experiments demonstrate orders-of-magnitude advantages over deep-learning-based digital-twin benchmarks in terms of accuracy, compactness and required calibration examples. Strikingly, our parameter estimation also works without phase information and without providing measurements for all considered scattering coefficients. These unique generalization capabilities of our pure-physics model unlock unforeseen and previously inaccessible frugal wave control protocols that significantly alleviate the measurement complexity. For instance, we achieve coherent wave control (focusing or perfect absorption) and phase-shift-keying backscatter communications in metasurface-programmable complex media with intensity-only measurements. Our approach is also directly relevant to dynamic metasurface antennas, microwave-based signal processors and emerging in situ reconfigurable nanophotonic, optical and room-acoustical systems.
超表面可编程无线电环境被认为是下一代无线网络的关键要素。然而,到目前为止,在未知的复杂环境中确定能产生所需无线功能的超表面配置,仅通过闭环迭代反馈方案才能实现。在此,我们通过估计基于紧凑物理的正向模型的参数,在超表面可编程复杂介质中引入开环波控制。我们的实验表明,在准确性、紧凑性和所需校准示例方面,相较于基于深度学习的数字孪生基准,具有数量级的优势。引人注目的是,我们的参数估计在没有相位信息且不为所有考虑的散射系数提供测量值的情况下也能起作用。我们纯物理模型的这些独特的泛化能力开启了前所未有的、以前无法实现的节俭波控制协议,显著减轻了测量复杂性。例如,我们仅通过强度测量就在超表面可编程复杂介质中实现了相干波控制(聚焦或完美吸收)以及相移键控反向散射通信。我们的方法还与动态超表面天线、基于微波的信号处理器以及新兴的原位可重构纳米光子、光学和室内声学系统直接相关。