Nadell Christian C, Huang Bohao, Malof Jordan M, Padilla Willie J
Opt Express. 2019 Sep 30;27(20):27523-27535. doi: 10.1364/OE.27.027523.
Deep learning has risen to the forefront of many fields in recent years, overcoming challenges previously considered intractable with conventional means. Materials discovery and optimization is one such field, but significant challenges remain, including the requirement of large labeled datasets and one-to-many mapping that arises in solving the inverse problem. Here we demonstrate modeling of complex all-dielectric metasurface systems with deep neural networks, using both the metasurface geometry and knowledge of the underlying physics as inputs. Our deep learning network is highly accurate, achieving an average mean square error of only 1.16 × 10 and is over five orders of magnitude faster than conventional electromagnetic simulation software. We further develop a novel method to solve the inverse modeling problem, termed fast forward dictionary search (FFDS), which offers tremendous controls to the designer and only requires an accurate forward neural network model. These techniques significantly increase the viability of more complex all-dielectric metasurface designs and provide opportunities for the future of tailored light matter interactions.
近年来,深度学习已跃居许多领域的前沿,克服了以前用传统方法认为难以解决的挑战。材料发现和优化就是这样一个领域,但仍然存在重大挑战,包括对大型标记数据集的需求以及在解决逆问题时出现的一对多映射。在这里,我们展示了用深度神经网络对复杂的全介质超表面系统进行建模,将超表面几何形状和基础物理知识都用作输入。我们的深度学习网络非常精确,平均均方误差仅为1.16×10 ,并且比传统电磁仿真软件快五个数量级以上。我们进一步开发了一种解决逆建模问题的新方法,称为快速前向字典搜索(FFDS),它为设计者提供了极大的控制权,并且只需要一个精确的前向神经网络模型。这些技术显著提高了更复杂的全介质超表面设计的可行性,并为未来定制光与物质相互作用提供了机会。