Department of Computer Science, Georgia State University, Atlanta, GA, USA.
Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
Nat Commun. 2024 Apr 2;15(1):2838. doi: 10.1038/s41467-024-47304-6.
The emergence of viral variants with altered phenotypes is a public health challenge underscoring the need for advanced evolutionary forecasting methods. Given extensive epistatic interactions within viral genomes and known viral evolutionary history, efficient genomic surveillance necessitates early detection of emerging viral haplotypes rather than commonly targeted single mutations. Haplotype inference, however, is a significantly more challenging problem precluding the use of traditional approaches. Here, using SARS-CoV-2 evolutionary dynamics as a case study, we show that emerging haplotypes with altered transmissibility can be linked to dense communities in coordinated substitution networks, which become discernible significantly earlier than the haplotypes become prevalent. From these insights, we develop a computational framework for inference of viral variants and validate it by successful early detection of known SARS-CoV-2 strains. Our methodology offers greater scalability than phylogenetic lineage tracing and can be applied to any rapidly evolving pathogen with adequate genomic surveillance data.
病毒变体表型改变的出现是一个公共卫生挑战,这凸显了需要先进的进化预测方法。鉴于病毒基因组内广泛的上位性相互作用和已知的病毒进化历史,有效的基因组监测需要尽早检测到新出现的病毒单倍型,而不是通常针对的单一突变。然而,单倍型推断是一个更具挑战性的问题,排除了传统方法的使用。在这里,我们使用 SARS-CoV-2 的进化动态作为案例研究,表明具有改变传染性的新出现单倍型可以与协调替代网络中的密集社区联系起来,这些网络在单倍型变得流行之前就可以更早地被识别出来。从这些见解中,我们开发了一种用于推断病毒变体的计算框架,并通过成功地早期检测已知的 SARS-CoV-2 株进行了验证。我们的方法比系统发育谱系追踪具有更大的可扩展性,并且可以应用于任何具有足够基因组监测数据的快速进化病原体。