Computational Oncology Unit, University of Chicago Medicine Comprehensive Cancer Center, 900 E 57th St, KCBD Bldg., Chicago, IL, 60637, USA.
Department of Anesthesiology, Oakland University William Beaumont School of Medicine, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA.
Sci Rep. 2024 Apr 2;14(1):7693. doi: 10.1038/s41598-024-57604-y.
We have developed an innovative tool, the Intelligent Catchment Analysis Tool (iCAT), designed to identify and address healthcare disparities across specific regions. Powered by Artificial Intelligence and Machine Learning, our tool employs a robust Geographic Information System (GIS) to map healthcare outcomes and disease disparities. iCAT allows users to query publicly available data sources, health system data, and treatment data, offering insights into gaps and disparities in diagnosis and treatment paradigms. This project aims to promote best practices to bridge the gap in healthcare access, resources, education, and economic opportunities. The project aims to engage local and regional stakeholders in data collection and evaluation, including patients, providers, and organizations. Their active involvement helps refine the platform and guides targeted interventions for more effective outcomes. In this paper, we present two sample illustrations demonstrating how iCAT identifies healthcare disparities and analyzes the impact of social and environmental variables on outcomes. Over time, this platform can help communities make decisions to optimize resource allocation.
我们开发了一种创新工具,即智能集水区分析工具 (iCAT),旨在识别和解决特定地区的医疗保健差距。该工具由人工智能和机器学习提供支持,使用强大的地理信息系统 (GIS) 来绘制医疗保健结果和疾病差距图。iCAT 允许用户查询公开可用的数据源、健康系统数据和治疗数据,深入了解诊断和治疗模式中的差距和差距。该项目旨在促进最佳实践,以弥合医疗保健获取、资源、教育和经济机会方面的差距。该项目旨在让当地和地区利益相关者参与数据收集和评估,包括患者、提供者和组织。他们的积极参与有助于完善平台,并指导有针对性的干预措施,以实现更有效的结果。在本文中,我们展示了两个示例来说明 iCAT 如何识别医疗保健差距,并分析社会和环境变量对结果的影响。随着时间的推移,这个平台可以帮助社区做出决策,优化资源分配。