Srivastav Amit Kumar, Singh Aryan, Singh Shailesh, Rivers Brian, Lillard James W, Singh Rajesh
Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
Hillgrove High School, Powder Springs, GA 30127, USA.
Cancers (Basel). 2025 Aug 31;17(17):2866. doi: 10.3390/cancers17172866.
Social determinants of health (SDOH) are critical contributors to cancer disparities, influencing prevention, early detection, treatment access, and survival outcomes. Addressing these disparities is essential in achieving equitable oncology care. Artificial intelligence (AI) is revolutionizing oncology by leveraging advanced computational methods to address SDOH-driven disparities through predictive analytics, data integration, and precision medicine.
This review synthesizes findings from systematic reviews and original research on AI applications in cancer-focused SDOH research. Key methodologies include machine learning (ML), natural language processing (NLP), deep learning-based medical imaging, and explainable AI (XAI). Special emphasis is placed on AI's ability to analyze large-scale oncology datasets, including electronic health records (EHRs), geographic information systems (GIS), and real-world clinical trial data, to enhance cancer risk stratification, optimize screening programs, and improve resource allocation.
AI has demonstrated significant advancements in cancer diagnostics, treatment planning, and survival prediction by integrating SDOH data. AI-driven radiomics and histopathology have enhanced early detection, particularly in underserved populations. Predictive modeling has improved personalized oncology care, enabling stratification based on socioeconomic and environmental factors. However, challenges remain, including AI bias in screening, trial underrepresentation, and treatment recommendation disparities.
AI holds substantial potential to reduce cancer disparities by integrating SDOH into risk prediction, screening, and treatment personalization. Ethical deployment, bias mitigation, and robust regulatory frameworks are essential in ensuring fairness in AI-driven oncology. Integrating AI into precision oncology and public health strategies can bridge cancer care gaps, enhance early detection, and improve treatment outcomes for vulnerable populations.
健康的社会决定因素(SDOH)是导致癌症差异的关键因素,影响着预防、早期检测、治疗可及性和生存结果。解决这些差异对于实现公平的肿瘤护理至关重要。人工智能(AI)正在通过利用先进的计算方法,通过预测分析、数据整合和精准医学来解决由SDOH驱动的差异,从而彻底改变肿瘤学。
本综述综合了关于AI在以癌症为重点的SDOH研究中的应用的系统评价和原创研究结果。关键方法包括机器学习(ML)、自然语言处理(NLP)、基于深度学习的医学成像和可解释人工智能(XAI)。特别强调AI分析大规模肿瘤数据集的能力,包括电子健康记录(EHR)、地理信息系统(GIS)和真实世界临床试验数据,以加强癌症风险分层、优化筛查计划和改善资源分配。
通过整合SDOH数据,AI在癌症诊断、治疗规划和生存预测方面取得了显著进展。AI驱动的放射组学和组织病理学增强了早期检测,特别是在服务不足的人群中。预测模型改善了个性化肿瘤护理,能够根据社会经济和环境因素进行分层。然而,挑战仍然存在,包括筛查中的AI偏差、试验代表性不足和治疗推荐差异。
通过将SDOH整合到风险预测、筛查和治疗个性化中,AI具有减少癌症差异的巨大潜力。道德部署、偏差缓解和强大的监管框架对于确保AI驱动的肿瘤学中的公平性至关重要。将AI整合到精准肿瘤学和公共卫生策略中可以弥合癌症护理差距,加强早期检测,并改善弱势群体的治疗结果。