Wang Jun, Yao Chen, Lu Siqi, Wang Suyun, Zheng Dong, Song Fengqi, Wan Jianguo
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
Atomic Manufacture Institute (AMI), 211805 Nanjing, China.
Phys Chem Chem Phys. 2024 Apr 17;26(15):11798-11806. doi: 10.1039/d4cp00301b.
The combination of transition-metal (TM) elements with two-dimensional (2D) transition-metal dichalcogenides (TMDs) provides an effective route to realizing a 2D controllable magnetic order, leading to significant applications in multifunctional nanospintronics. However, in most TM atoms@TMDs nanostructures, it is challenging for the magnetic anisotropy energy (MAE) to exceed 30 meV when affected by the crystal field. Hence, the stronger magnetic anisotropy of TMDs has yet to be developed. Here, utilizing first-principle calculations based on density functional theory (DFT), a feasible method to enhance the MAEs of TMDs configurating iridium dimers (Ir) on 2D traditional and Janus TMDs with antisite defects is reported. Calculations revealed that 28 of the 54 configurations considered possessed structure-dependent MAEs of >60 meV per Ir in the out-of-plane direction, suggesting the potential for applications at room temperature. We also showed the ability to tune the MAE further massively by applying a biaxial strain as well as the surface asymmetric polarization reversal of Janus-type substrates. This approach led to changes to >80 meV per Ir. This work provides a novel strategy to achieve tunable large magnetic anisotropy in 2D TMDs. It also extends the functionality of antisite-defective TMDs, thereby providing theoretical support for the development of magnetic nanodevices.
过渡金属(TM)元素与二维(2D)过渡金属二硫属化物(TMD)的结合为实现二维可控磁序提供了一条有效途径,在多功能纳米自旋电子学中具有重要应用。然而,在大多数TM原子@TMDs纳米结构中,当受到晶体场影响时,磁各向异性能(MAE)超过30 meV具有挑战性。因此,TMDs更强的磁各向异性尚未得到开发。在此,利用基于密度泛函理论(DFT)的第一性原理计算,报道了一种在具有反位缺陷的二维传统和Janus TMDs上配置铱二聚体(Ir)来增强TMDs的MAE的可行方法。计算表明,在所考虑的54种构型中,有28种在面外方向上每个Ir具有大于60 meV的与结构相关的MAE,表明其在室温下应用的潜力。我们还展示了通过施加双轴应变以及Janus型衬底的表面不对称极化反转来进一步大幅调节MAE的能力。这种方法导致每个Ir的变化超过80 meV。这项工作为在二维TMDs中实现可调谐的大磁各向异性提供了一种新策略。它还扩展了反位缺陷TMDs的功能,从而为磁性纳米器件的开发提供了理论支持。