Suppr超能文献

使用机器学习图像分割对3D组织培养进行无损定量活力分析。

Nondestructive, quantitative viability analysis of 3D tissue cultures using machine learning image segmentation.

作者信息

Trettner Kylie J, Hsieh Jeremy, Xiao Weikun, Lee Jerry S H, Armani Andrea M

机构信息

Pasadena Polytechnic High School, Pasadena, California 91106, USA.

Ellison Institute of Technology, Los Angeles, California 90064, USA.

出版信息

APL Bioeng. 2024 Mar 28;8(1):016121. doi: 10.1063/5.0189222. eCollection 2024 Mar.

Abstract

Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continuity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix compositions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness and reproducibility of 3D culture analysis across biological and clinical research.

摘要

确定不同细胞培养条件下细胞的总体活力通常依赖于对比色指标进行平均,并且通常以简单的二元读数形式报告。最近的研究将活力评估技术与基于图像的深度学习模型相结合,以实现细胞特性表征的自动化。然而,需要进一步发展活力测量方法,以评估细胞状态的连续性以及跨细胞培养条件对扰动的反应。在这项工作中,我们展示了一种图像处理算法,用于在无需基于检测的指标的情况下量化与三维培养中细胞活力相关的特征。我们表明,在一系列天数和培养基质组成的全孔图像中,我们的算法与两位人类专家的表现相似。为了证明其潜在用途,我们进行了一项纵向研究,调查一种已知疗法对胰腺癌球体的影响。使用高内涵成像系统拍摄的图像,该算法成功地在单个球体和全孔水平上跟踪活力。与专家相比,我们提出的方法将分析时间减少了97%。由于该方法独立于所使用的显微镜或成像系统,这种方法为加速生物和临床研究中三维培养分析的进展以及提高其稳健性和可重复性奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcdf/10985731/1b9cdac59843/ABPID9-000008-016121_1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验