Suppr超能文献

TG-Net:基于全身 uEXPLORER PET/CT 扫描仪的鼻咽癌肿瘤分割的 Transformer 和 GAN 结合

TG-Net: Combining transformer and GAN for nasopharyngeal carcinoma tumor segmentation based on total-body uEXPLORER PET/CT scanner.

机构信息

Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 101408, China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

出版信息

Comput Biol Med. 2022 Sep;148:105869. doi: 10.1016/j.compbiomed.2022.105869. Epub 2022 Jul 21.

Abstract

Nasopharyngeal carcinoma (NPC) is a malignant tumor, and the main treatment is radiotherapy. Accurate delineation of the target tumor is essential for radiotherapy of NPC. NPC tumors are small in size and vary widely in shape and structure, making it a time-consuming and laborious task for even experienced radiologists to manually outline tumors. However, the segmentation performance of current deep learning models is not satisfactory, mainly manifested by poor segmentation boundaries. To solve this problem, this paper proposes a segmentation method for nasopharyngeal carcinoma based on dynamic PET-CT image data, whose input data include CT, PET, and parametric images (Ki images). This method uses a generative adversarial network with a modified UNet integrated with a Transformer as the generator (TG-Net) to achieve automatic segmentation of NPC on combined CT-PET-Ki images. In the coding stage, TG-Net uses moving windows to replace traditional pooling operations to obtain patches of different sizes, which can reduce information loss in the coding process. Moreover, the introduction of Transformer can make the network learn more representative features and improve the discriminant ability of the model, especially for tumor boundaries. Finally, the results of fivefold cross validation with an average Dice similarity coefficient score of 0.9135 show that our method has good segmentation performance. Comparative experiments also show that our network structure is superior to the most advanced methods in the segmentation of NPC. In addition, this work is the first to use Ki images to assist tumor segmentation. We also demonstrated the usefulness of adding Ki images to aid in tumor segmentation.

摘要

鼻咽癌(NPC)是一种恶性肿瘤,主要治疗方法是放疗。准确勾画肿瘤靶区是鼻咽癌放疗的关键。NPC 肿瘤体积小,形状和结构差异大,即使是经验丰富的放射科医生手动勾画肿瘤也非常耗时费力。然而,目前深度学习模型的分割性能并不理想,主要表现为分割边界较差。为了解决这个问题,本文提出了一种基于动态 PET-CT 图像数据的鼻咽癌分割方法,其输入数据包括 CT、PET 和参数图像(Ki 图像)。该方法使用具有修改后的 UNet 的生成对抗网络与 Transformer 集成作为生成器(TG-Net),在 CT-PET-Ki 图像上实现 NPC 的自动分割。在编码阶段,TG-Net 使用移动窗口代替传统的池化操作来获取不同大小的补丁,从而减少编码过程中的信息丢失。此外,Transformer 的引入可以使网络学习更具代表性的特征,提高模型的判别能力,特别是对于肿瘤边界。最后,五重交叉验证的结果平均 Dice 相似系数评分为 0.9135,表明我们的方法具有良好的分割性能。对比实验也表明,我们的网络结构在 NPC 分割方面优于最先进的方法。此外,这项工作首次使用 Ki 图像辅助肿瘤分割。我们还证明了添加 Ki 图像辅助肿瘤分割的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验