Suppr超能文献

用于贝叶斯脑磁共振成像分割的无监督深度学习

Unsupervised Deep Learning for Bayesian Brain MRI Segmentation.

作者信息

Dalca Adrian V, Yu Evan, Golland Polina, Fischl Bruce, Sabuncu Mert R, Iglesias Juan Eugenio

机构信息

Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School.

Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11766:356-365. doi: 10.1007/978-3-030-32248-9_40. Epub 2019 Oct 10.

Abstract

Probabilistic atlas priors have been commonly used to derive adaptive and robust brain MRI segmentation algorithms. Widely-used neuroimage analysis pipelines rely heavily on these techniques, which are often computationally expensive. In contrast, there has been a recent surge of approaches that leverage deep learning to implement segmentation tools that are computationally efficient at test time. However, most of these strategies rely on learning from manually annotated images. These supervised deep learning methods are therefore sensitive to the intensity profiles in the training dataset. To develop a deep learning-based segmentation model for a new image dataset (e.g., of different contrast), one usually needs to create a new labeled training dataset, which can be prohibitively expensive, or rely on suboptimal adaptation or augmentation approaches. In this paper, we propose an alternative strategy that combines a conventional probabilistic atlas-based segmentation with deep learning, enabling one to train a segmentation model for new MRI scans without the need for any manually segmented images. Our experiments include thousands of brain MRI scans and demonstrate that the proposed method achieves good accuracy for a brain MRI segmentation task for different MRI contrasts, requiring only approximately 15 seconds at test time on a GPU.

摘要

概率图谱先验已被广泛用于推导自适应且稳健的脑磁共振成像(MRI)分割算法。广泛使用的神经影像分析流程严重依赖这些技术,而这些技术通常计算成本很高。相比之下,最近涌现出了大量利用深度学习来实现测试时计算效率高的分割工具的方法。然而,这些策略大多依赖于从人工标注图像中学习。因此,这些监督式深度学习方法对训练数据集中的强度分布很敏感。要为新的图像数据集(例如不同对比度的数据集)开发基于深度学习的分割模型,通常需要创建一个新的有标签训练数据集,这可能成本过高,或者依赖次优的适配或增强方法。在本文中,我们提出了一种替代策略,将传统的基于概率图谱的分割与深度学习相结合,使人们能够在无需任何人工分割图像的情况下为新的MRI扫描训练分割模型。我们的实验包括数千次脑MRI扫描,结果表明,所提出的方法在不同MRI对比度的脑MRI分割任务中取得了良好的准确率,在GPU上测试时仅需约15秒。

相似文献

1
Unsupervised Deep Learning for Bayesian Brain MRI Segmentation.用于贝叶斯脑磁共振成像分割的无监督深度学习
Med Image Comput Comput Assist Interv. 2019 Oct;11766:356-365. doi: 10.1007/978-3-030-32248-9_40. Epub 2019 Oct 10.
8
Unsupervised domain adaptation method for segmenting cross-sectional CCA images.用于分割横断面颈总动脉图像的无监督域适应方法。
Comput Methods Programs Biomed. 2022 Oct;225:107037. doi: 10.1016/j.cmpb.2022.107037. Epub 2022 Jul 22.

引用本文的文献

1
8
Self-Supervised Longitudinal Neighbourhood Embedding.自监督纵向邻域嵌入
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:80-89. doi: 10.1007/978-3-030-87196-3_8. Epub 2021 Sep 21.
10
How Machine Learning is Powering Neuroimaging to Improve Brain Health.机器学习如何助力神经影像学改善大脑健康。
Neuroinformatics. 2022 Oct;20(4):943-964. doi: 10.1007/s12021-022-09572-9. Epub 2022 Mar 28.

本文引用的文献

3
TeTrIS: Template Transformer Networks for Image Segmentation With Shape Priors.TeTrIS:具有形状先验的模板变换网络图像分割。
IEEE Trans Med Imaging. 2019 Nov;38(11):2596-2606. doi: 10.1109/TMI.2019.2905990. Epub 2019 Mar 22.
5
Learning a Probabilistic Model for Diffeomorphic Registration.学习用于可变形配准的概率模型。
IEEE Trans Med Imaging. 2019 Sep;38(9):2165-2176. doi: 10.1109/TMI.2019.2897112. Epub 2019 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验