Dalca Adrian V, Yu Evan, Golland Polina, Fischl Bruce, Sabuncu Mert R, Iglesias Juan Eugenio
Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School.
Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:356-365. doi: 10.1007/978-3-030-32248-9_40. Epub 2019 Oct 10.
Probabilistic atlas priors have been commonly used to derive adaptive and robust brain MRI segmentation algorithms. Widely-used neuroimage analysis pipelines rely heavily on these techniques, which are often computationally expensive. In contrast, there has been a recent surge of approaches that leverage deep learning to implement segmentation tools that are computationally efficient at test time. However, most of these strategies rely on learning from manually annotated images. These supervised deep learning methods are therefore sensitive to the intensity profiles in the training dataset. To develop a deep learning-based segmentation model for a new image dataset (e.g., of different contrast), one usually needs to create a new labeled training dataset, which can be prohibitively expensive, or rely on suboptimal adaptation or augmentation approaches. In this paper, we propose an alternative strategy that combines a conventional probabilistic atlas-based segmentation with deep learning, enabling one to train a segmentation model for new MRI scans without the need for any manually segmented images. Our experiments include thousands of brain MRI scans and demonstrate that the proposed method achieves good accuracy for a brain MRI segmentation task for different MRI contrasts, requiring only approximately 15 seconds at test time on a GPU.
概率图谱先验已被广泛用于推导自适应且稳健的脑磁共振成像(MRI)分割算法。广泛使用的神经影像分析流程严重依赖这些技术,而这些技术通常计算成本很高。相比之下,最近涌现出了大量利用深度学习来实现测试时计算效率高的分割工具的方法。然而,这些策略大多依赖于从人工标注图像中学习。因此,这些监督式深度学习方法对训练数据集中的强度分布很敏感。要为新的图像数据集(例如不同对比度的数据集)开发基于深度学习的分割模型,通常需要创建一个新的有标签训练数据集,这可能成本过高,或者依赖次优的适配或增强方法。在本文中,我们提出了一种替代策略,将传统的基于概率图谱的分割与深度学习相结合,使人们能够在无需任何人工分割图像的情况下为新的MRI扫描训练分割模型。我们的实验包括数千次脑MRI扫描,结果表明,所提出的方法在不同MRI对比度的脑MRI分割任务中取得了良好的准确率,在GPU上测试时仅需约15秒。