Suppr超能文献

揭开危险习惯的面具:通过机器学习技术识别和预测问题赌徒。

Unmasking Risky Habits: Identifying and Predicting Problem Gamblers Through Machine Learning Techniques.

机构信息

Institute of Economics, Corvinus University of Budapest, Fővám tér 8, 1093, Budapest, Hungary.

出版信息

J Gambl Stud. 2024 Sep;40(3):1367-1377. doi: 10.1007/s10899-024-10297-4. Epub 2024 Apr 3.

Abstract

The use of machine learning techniques to identify problem gamblers has been widely established. However, existing methods often rely on self-reported labeling, such as temporary self-exclusion or account closure. In this study, we propose a novel approach that combines two documented methods. First we create labels for problem gamblers in an unsupervised manner. Subsequently, we develop prediction models to identify these users in real-time. The methods presented in this study offer useful insights that can be leveraged to implement interventions aimed at guiding or discouraging players from engaging in disordered gambling behaviors. This has potential implications for promoting responsible gambling and fostering healthier player habits.

摘要

使用机器学习技术来识别问题赌徒已经得到了广泛的证实。然而,现有的方法通常依赖于自我报告的标签,例如临时自我排除或账户关闭。在这项研究中,我们提出了一种结合两种已有方法的新方法。首先,我们以无监督的方式为问题赌徒创建标签。随后,我们开发预测模型来实时识别这些用户。本研究提出的方法提供了有用的见解,可以利用这些见解来实施干预措施,引导或劝阻玩家从事无序赌博行为。这对于促进负责任的赌博和培养更健康的玩家习惯具有潜在影响。

相似文献

本文引用的文献

3
The societal costs of problem gambling in Sweden.瑞典问题赌博的社会成本。
BMC Public Health. 2020 Dec 18;20(1):1921. doi: 10.1186/s12889-020-10008-9.
6
Equivalent gambling warning labels are perceived differently.等效的赌博警示标签被不同地感知。
Addiction. 2020 Sep;115(9):1762-1767. doi: 10.1111/add.14954. Epub 2020 Feb 7.
8
Applications of machine learning in addiction studies: A systematic review.机器学习在成瘾研究中的应用:系统评价。
Psychiatry Res. 2019 May;275:53-60. doi: 10.1016/j.psychres.2019.03.001. Epub 2019 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验