Suppr超能文献

美国县级社会环境因素与卒中死亡率的关联:一项横断面研究

County-Level Socio-Environmental Factors Associated With Stroke Mortality in the United States: A Cross-Sectional Study.

作者信息

Salerno Pedro R V O, Motairek Issam, Dong Weichuan, Nasir Khurram, Fotedar Neel, Omran Setareh S, Ganatra Sarju, Hahad Omar, Deo Salil V, Rajagopalan Sanjay, Al-Kindi Sadeer G

机构信息

Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.

Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

出版信息

Angiology. 2024 Apr 3:33197241244814. doi: 10.1177/00033197241244814.

Abstract

We used machine learning methods to explore sociodemographic and environmental determinants of health (SEDH) associated with county-level stroke mortality in the USA. We conducted a cross-sectional analysis of individuals aged ≥15 years who died from all stroke subtypes between 2016 and 2020. We analyzed 54 county-level SEDH possibly associated with age-adjusted stroke mortality rates/100,000 people. Classification and Regression Tree (CART) was used to identify specific county-level clusters associated with stroke mortality. Variable importance was assessed using Random Forest analysis. A total of 501,391 decedents from 2397 counties were included. CART identified 10 clusters, with 77.5% relative increase in stroke mortality rates across the spectrum (28.5 vs 50.7 per 100,000 persons). CART identified 8 SEDH to guide the classification of the county clusters. Including, annual ($), live births with , current adult adults reporting adequate , adults reporting adults with diagnosed (%), and adults reporting . In conclusion, SEDH exposures have a complex relationship with stroke. Machine learning approaches can help deconstruct this relationship and demonstrate associations that allow improved understanding of the socio-environmental drivers of stroke and development of targeted interventions.

摘要

我们使用机器学习方法来探究与美国县级卒中死亡率相关的社会人口统计学和环境健康决定因素(SEDH)。我们对2016年至2020年间死于所有卒中亚型的15岁及以上个体进行了横断面分析。我们分析了54个可能与年龄调整后的卒中死亡率/10万人相关的县级SEDH。使用分类与回归树(CART)来识别与卒中死亡率相关的特定县级集群。使用随机森林分析评估变量重要性。共纳入了来自2397个县的501391名死者。CART识别出10个集群,整个范围内卒中死亡率相对增加77.5%(每10万人中从28.5例增至50.7例)。CART识别出8个SEDH以指导县集群的分类。包括,年收入(美元)、活产数、报告有充足[具体内容缺失]的当前成年人数、报告有被诊断为[具体疾病缺失]的成年人数(%)以及报告[具体内容缺失]的成年人数。总之,SEDH暴露与卒中存在复杂关系。机器学习方法有助于解构这种关系,并展示出相关关联,从而增进对卒中社会环境驱动因素的理解以及制定针对性干预措施。

相似文献

6
Community wide interventions for increasing physical activity.全社区范围内增加身体活动的干预措施。
Cochrane Database Syst Rev. 2015 Jan 5;1(1):CD008366. doi: 10.1002/14651858.CD008366.pub3.

本文引用的文献

2
Diabetes and Stroke: What Are the Connections?糖尿病与中风:有何关联?
J Stroke. 2023 Jan;25(1):26-38. doi: 10.5853/jos.2022.02306. Epub 2023 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验