Suppr超能文献

双通道空间频率域 CycleGAN 用于经颅皮质血管结构和功能的感知增强。

Dual-Channel in Spatial-Frequency Domain CycleGAN for perceptual enhancement of transcranial cortical vascular structure and function.

机构信息

Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China.

Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Comput Biol Med. 2024 May;173:108377. doi: 10.1016/j.compbiomed.2024.108377. Epub 2024 Mar 25.

Abstract

Observing cortical vascular structures and functions using laser speckle contrast imaging (LSCI) at high resolution plays a crucial role in understanding cerebral pathologies. Usually, open-skull window techniques have been applied to reduce scattering of skull and enhance image quality. However, craniotomy surgeries inevitably induce inflammation, which may obstruct observations in certain scenarios. In contrast, image enhancement algorithms provide popular tools for improving the signal-to-noise ratio (SNR) of LSCI. The current methods were less than satisfactory through intact skulls because the transcranial cortical images were of poor quality. Moreover, existing algorithms do not guarantee the accuracy of dynamic blood flow mappings. In this study, we develop an unsupervised deep learning method, named Dual-Channel in Spatial-Frequency Domain CycleGAN (SF-CycleGAN), to enhance the perceptual quality of cortical blood flow imaging by LSCI. SF-CycleGAN enabled convenient, non-invasive, and effective cortical vascular structure observation and accurate dynamic blood flow mappings without craniotomy surgeries to visualize biodynamics in an undisturbed biological environment. Our experimental results showed that SF-CycleGAN achieved a SNR at least 4.13 dB higher than that of other unsupervised methods, imaged the complete vascular morphology, and enabled the functional observation of small cortical vessels. Additionally, the proposed method showed remarkable robustness and could be generalized to various imaging configurations and image modalities, including fluorescence images, without retraining.

摘要

使用激光散斑对比成像 (LSCI) 高分辨率观察皮质血管结构和功能,对于理解大脑病理学起着至关重要的作用。通常,开颅窗技术已被应用于减少颅骨散射并提高图像质量。然而,开颅手术不可避免地会引起炎症,这可能会在某些情况下阻碍观察。相比之下,图像增强算法是提高 LSCI 信噪比 (SNR) 的常用工具。目前的方法在完整颅骨下效果不佳,因为颅外皮质图像质量较差。此外,现有的算法并不能保证动态血流映射的准确性。在这项研究中,我们开发了一种无监督深度学习方法,名为双通道空间-频率域循环生成对抗网络 (SF-CycleGAN),用于通过 LSCI 增强皮质血流成像的感知质量。SF-CycleGAN 实现了方便、非侵入性和有效的皮质血管结构观察和准确的动态血流映射,无需开颅手术即可在未受干扰的生物环境中可视化生物动力学。我们的实验结果表明,SF-CycleGAN 实现的 SNR 比其他无监督方法至少高 4.13dB,可成像完整的血管形态,并可对小皮质血管进行功能观察。此外,该方法表现出显著的鲁棒性,可以推广到各种成像配置和图像模式,包括荧光图像,无需重新训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验