Sang Xu, Cao Ruixi, Niu Liushuan, Chen Bin, Li Dong, Li Qiang
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Henan Youde Medical Equipment Co., Ltd, Kaifeng 475000, China.
Biomed Opt Express. 2025 Feb 20;16(3):1118-1142. doi: 10.1364/BOE.545628. eCollection 2025 Mar 1.
To tackle real-time denoising of noisy laser speckle blood flow images, a novel lightweight denoising speckle contrast image generative adversarial network (LDSCI-GAN) is proposed. In the framework, a lightweight denoiser removes noise from the original image, and a discriminator compares the denoised result with the reference one, enabling efficient learning and optimization of the denoising process. With a multi-scale loss function in the log-transformed domain, the training process significantly improves accuracy and denoising by using only five frames of raw speckle images while well-preserving the overall pixel distribution and vascular contours. Animal and phantom experimental results indicate that the LDSCI-GAN can eliminate vascular artifacts while retaining the accuracy of relative blood flow velocity. In terms of peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM), and Pearson correlation coefficient (R), the LDSCI-GAN outperforms other deep-learning methods by 3.07 dB, 0.10 (< 0.001), and 0.09 ( = 0.023), respectively. It has been successfully applied to the real-time monitoring of laser-induced thrombosis. Through conducting tests on the denoising performance of blood flow images of a moving subject, our proposed method achieved enhancements of 23.6% in PSNR, 30% in MSSIM, and 6.5% in the metric R, respectively, when compared to DRSNet. This means that the LDSCI-GAN also shows possible application in handheld devices, offering a potent tool for investigating blood flow and thrombosis dynamics more efficiently and conveniently.
为解决有噪声的激光散斑血流图像的实时去噪问题,提出了一种新型轻量级去噪散斑对比度图像生成对抗网络(LDSCI-GAN)。在该框架中,一个轻量级去噪器从原始图像中去除噪声,一个判别器将去噪结果与参考结果进行比较,从而实现去噪过程的高效学习和优化。通过在对数变换域中使用多尺度损失函数,训练过程仅使用五帧原始散斑图像就能显著提高准确性和去噪效果,同时很好地保留整体像素分布和血管轮廓。动物和体模实验结果表明,LDSCI-GAN可以消除血管伪影,同时保留相对血流速度的准确性。在峰值信噪比(PSNR)、平均结构相似性指数(MSSIM)和皮尔逊相关系数(R)方面,LDSCI-GAN分别比其他深度学习方法高出3.07 dB、0.10(<0.001)和0.09(=0.023)。它已成功应用于激光诱导血栓形成的实时监测。通过对运动对象的血流图像去噪性能进行测试,与DRSNet相比,我们提出的方法在PSNR、MSSIM和指标R方面分别提高了23.6%、30%和6.5%。这意味着LDSCI-GAN在手持设备中也显示出应用潜力,为更高效、方便地研究血流和血栓形成动力学提供了一个有力工具。