Suppr超能文献

RADD-CycleGAN:基于带有残差注意力和双域判别器的CycleGAN的高质量超声图像无监督重建

RADD-CycleGAN: unsupervised reconstruction of high-quality ultrasound image based on CycleGAN with residual attention and dual-domain discrimination.

作者信息

Si Mateng, Wu Musheng, Wang Qing

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.

出版信息

Phys Med Biol. 2024 Dec 17;69(24). doi: 10.1088/1361-6560/ad997f.

Abstract

Plane wave (PW) imaging is fast, but limited by poor imaging quality. Coherent PW compounding (CPWC) improves image quality but decrease frame rate. In this study, we propose a modified CycleGAN model that combines a residual attention module with a space-frequency dual-domain discriminator, termed RADD-CycleGAN, to rapidly reconstruct high-quality ultrasound images. To enhance the ability to reconstruct image details, we specially design a process of hybrid dynamic and static channel selection followed by the frequency domain discriminator. The low-quality images are generated by the 3-angle CPWC, while the high-quality images are generated as real images (ground truth) by the 75-angle CPWC. The training set includes unpaired images, whereas the images in the test set are paired to verify the validity and superiority of the proposed model. Finally, we respectively design ablation and comparison experiments to evaluate the model performance. Compared with the basic CycleGAN, our proposed method reaches a better performance, with a 7.8% increase in the peak signal-to-noise ratio and a 22.2% increase in the structural similarity index measure. The experimental results show that our method achieves the best unsupervised reconstruction from low quality images in comparison with several state-of-the-art methods.

摘要

平面波(PW)成像速度快,但受成像质量差的限制。相干PW复合(CPWC)可提高图像质量,但会降低帧率。在本研究中,我们提出了一种改进的CycleGAN模型,该模型将残差注意力模块与空频双域鉴别器相结合,称为RADD-CycleGAN,以快速重建高质量超声图像。为了增强重建图像细节的能力,我们专门设计了一个混合动态和静态通道选择的过程,然后是频域鉴别器。低质量图像由3角度CPWC生成,而高质量图像由75角度CPWC作为真实图像(真实值)生成。训练集包括未配对的图像,而测试集中的图像是配对的,以验证所提出模型的有效性和优越性。最后,我们分别设计了消融实验和对比实验来评估模型性能。与基本的CycleGAN相比,我们提出的方法具有更好的性能,峰值信噪比提高了7.8%,结构相似性指数测量提高了22.2%。实验结果表明,与几种最新方法相比,我们的方法在从低质量图像进行无监督重建方面取得了最佳效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验