Suppr超能文献

CECT:用于 COVID-19 图像分类的可控集成 CNN 和 Transformer。

CECT: Controllable ensemble CNN and transformer for COVID-19 image classification.

机构信息

Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.

出版信息

Comput Biol Med. 2024 May;173:108388. doi: 10.1016/j.compbiomed.2024.108388. Epub 2024 Mar 29.

Abstract

The COVID-19 pandemic has resulted in hundreds of million cases and numerous deaths worldwide. Here, we develop a novel classification network CECT by controllable ensemble convolutional neural network and transformer to provide a timely and accurate COVID-19 diagnosis. The CECT is composed of a parallel convolutional encoder block, an aggregate transposed-convolutional decoder block, and a windowed attention classification block. Each block captures features at different scales from 28 × 28 to 224 × 224 from the input, composing enriched and comprehensive information. Different from existing methods, our CECT can capture features at both multi-local and global scales without any sophisticated module design. Moreover, the contribution of local features at different scales can be controlled with the proposed ensemble coefficients. We evaluate CECT on two public COVID-19 datasets and it reaches the highest accuracy of 98.1% in the intra-dataset evaluation, outperforming existing state-of-the-art methods. Moreover, the developed CECT achieves an accuracy of 90.9% on the unseen dataset in the inter-dataset evaluation, showing extraordinary generalization ability. With remarkable feature capture ability and generalization ability, we believe CECT can be extended to other medical scenarios as a powerful diagnosis tool. Code is available at https://github.com/NUS-Tim/CECT.

摘要

新冠疫情已在全球范围内导致数以亿计的病例和大量死亡。在这里,我们通过可控集成卷积神经网络和转换器开发了一种新的分类网络 CECT,以提供及时、准确的 COVID-19 诊断。CECT 由并行卷积编码器块、聚合转置卷积解码器块和窗口注意力分类块组成。每个块从输入中捕获 28×28 到 224×224 不同尺度的特征,组成丰富全面的信息。与现有方法不同,我们的 CECT 可以在不使用任何复杂模块设计的情况下,同时捕获多局部和全局尺度的特征。此外,我们提出的集成系数可以控制不同尺度的局部特征的贡献。我们在两个公开的 COVID-19 数据集上评估了 CECT,在内部数据集评估中达到了 98.1%的最高准确率,超过了现有的最先进方法。此外,在跨数据集评估中,开发的 CECT 在未见数据集上的准确率达到 90.9%,显示出非凡的泛化能力。由于具有显著的特征捕捉能力和泛化能力,我们相信 CECT 可以作为一种强大的诊断工具,扩展到其他医疗场景中。代码可在 https://github.com/NUS-Tim/CECT 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验