Suppr超能文献

基于 CT 和 X 光图像的 COVID-19 分类的新型深度迁移学习的大规模实证研究。

Novel large empirical study of deep transfer learning for COVID-19 classification based on CT and X-ray images.

机构信息

Department of Computer Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.

Department of Physics, Chuo University, Tokyo, 112-8551, Japan.

出版信息

Sci Rep. 2024 Nov 3;14(1):26520. doi: 10.1038/s41598-024-76498-4.

Abstract

The early and highly accurate prediction of COVID-19 based on medical images can speed up the diagnostic process and thereby mitigate disease spread; therefore, developing AI-based models is an inevitable endeavor. The presented work, to our knowledge, is the first to expand the model space and identify a better performing model among 10,000 constructed deep transfer learning (DTL) models as follows. First, we downloaded and processed 4481 CT and X-ray images pertaining to COVID-19 and non-COVID-19 patients, obtained from the Kaggle repository. Second, we provide processed images as inputs to four pre-trained deep learning models (ConvNeXt, EfficientNetV2, DenseNet121, and ResNet34) on more than a million images from the ImageNet database, in which we froze the convolutional and pooling layers pertaining to the feature extraction part while unfreezing and training the densely connected classifier with the Adam optimizer. Third, we generate and take a majority vote of two, three, and four combinations from the four DTL models, resulting in [Formula: see text] DTL models. Then, we combine the 11 DTL models, followed by consecutively generating and taking the majority vote of [Formula: see text] DTL models. Finally, we select [Formula: see text] DTL models from [Formula: see text] Experimental results from the whole datasets using five-fold cross-validation demonstrate that the best generated DTL model, named HC, achieving the best AUC of 0.909 when applied to the CT dataset, while ConvNeXt yielded a higher marginal AUC of 0.933 compared to 0.93 for HX when considering the X-ray dataset. These promising results set the foundation for promoting the large generation of models (LGM) in AI.

摘要

基于医学图像对 COVID-19 进行早期、准确的预测可以加快诊断过程,从而减轻疾病的传播;因此,开发基于人工智能的模型是一项必然的努力。据我们所知,这项工作首次扩展了模型空间,并在 10000 个构建的深度迁移学习 (DTL) 模型中确定了一个表现更好的模型,具体如下。首先,我们从 Kaggle 存储库中下载并处理了 4481 张与 COVID-19 和非 COVID-19 患者有关的 CT 和 X 射线图像。其次,我们将处理后的图像作为输入,提供给四个预训练的深度学习模型(ConvNeXt、EfficientNetV2、DenseNet121 和 ResNet34),这些模型在来自 ImageNet 数据库的超过 100 万张图像上进行了训练,其中我们冻结了与特征提取部分相关的卷积和池化层,同时解冻并使用 Adam 优化器训练密集连接的分类器。第三,我们从四个 DTL 模型中生成并对两个、三个和四个组合进行多数投票,得到 [Formula: see text] 个 DTL 模型。然后,我们将 11 个 DTL 模型进行组合,然后连续生成并对 [Formula: see text] 个 DTL 模型进行多数投票。最后,我们从整个数据集的 [Formula: see text] 个实验结果中选择 [Formula: see text] 个 DTL 模型,使用五折交叉验证,结果表明,在 CT 数据集上应用时,最佳生成的 DTL 模型 HC 的最佳 AUC 为 0.909,而在考虑 X 射线数据集时,ConvNeXt 的 AUC 比 HX 高 0.933。这些有希望的结果为推动人工智能中的大模型生成 (LGM) 奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3364/11532342/957fda4412e0/41598_2024_76498_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验