Suppr超能文献

调整氮化钛难熔金属中的等离子体共振。

Tuning the plasmonic resonance in TiN refractory metal.

作者信息

Rana Anchal, Sharma Neeraj Kumar, Bera Sambhunath, Yadav Aditya, Gupta Govind, Rana Abhimanyu Singh

机构信息

Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, Haryana, 122413, India.

CSIR-National Physical Laboratory, K.S. Krishnan Marg, New Delhi, 110012, India.

出版信息

Sci Rep. 2024 Apr 4;14(1):7905. doi: 10.1038/s41598-024-55000-0.

Abstract

Plasmonic coatings can absorb electromagnetic radiation from visible to far-infrared spectrum for the better performance of solar panels and energy saving smart windows. For these applications, it is important for these coatings to be as thin as possible and grown at lower temperatures on arbitrary substrates like glass, silicon, or flexible polymers. Here, we tune and investigate the plasmonic resonance of titanium nitride thin films in lower thicknesses regime varying from ~ 20 to 60 nm. High-quality crystalline thin films of route-mean-square roughness less than ~ 0.5 nm were grown on a glass substrate at temperature of ~ 200 °C with bias voltage of - 60 V using cathodic vacuum arc deposition. A local surface-enhanced-plasmonic-resonance was observed between 400 and 500 nm, which further shows a blueshift in plasmonic frequency in thicker films due to the increase in the carrier mobility. These results were combined with finite-difference-time-domain numerical analysis to understand the role of thicknesses and stoichiometry on the broadening of electromagnetic absorption.

摘要

等离子体涂层可以吸收从可见光到远红外光谱的电磁辐射,以提高太阳能电池板的性能和节能智能窗户的性能。对于这些应用,这些涂层尽可能薄并在诸如玻璃、硅或柔性聚合物等任意衬底上在较低温度下生长非常重要。在此,我们在约20至60纳米的较低厚度范围内调谐并研究了氮化钛薄膜的等离子体共振。使用阴极真空电弧沉积,在玻璃衬底上,在约200°C的温度和约 -60V的偏压下,生长了均方根粗糙度小于约0.5纳米的高质量晶体薄膜。在400至500纳米之间观察到局部表面增强等离子体共振,由于载流子迁移率的增加,较厚薄膜中的等离子体频率进一步出现蓝移。将这些结果与有限时域差分数值分析相结合,以了解厚度和化学计量对电磁吸收展宽的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb1/10991307/1ee90346e91c/41598_2024_55000_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验