Suppr超能文献

用于自动电压调节器的V型虎PID控制器的性能与鲁棒性分析

Performance and robustness analysis of V-Tiger PID controller for automatic voltage regulator.

作者信息

Gopi Pasala, Reddy S Venkateswarlu, Bajaj Mohit, Zaitsev Ievgen, Prokop Lukas

机构信息

Electrical and Electronics Engineering, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet, India.

Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India.

出版信息

Sci Rep. 2024 Apr 3;14(1):7867. doi: 10.1038/s41598-024-58481-1.

Abstract

This paper presents a comprehensive study on the implementation and analysis of PID controllers in an automated voltage regulator (AVR) system. A novel tuning technique, Virtual Time response-based iterative gain evaluation and re-design (V-Tiger), is introduced to iteratively adjust PID gains for optimal control performance. The study begins with the development of a mathematical model for the AVR system and initialization of PID gains using the Pessen Integral Rule. Virtual time-response analysis is then conducted to evaluate system performance, followed by iterative gain adjustments using Particle Swarm Optimization (PSO) within the V-Tiger framework. MATLAB simulations are employed to implement various controllers, including the V-Tiger PID controller, and their performance is compared in terms of transient response, stability, and control signal generation. Robustness analysis is conducted to assess the system's stability under uncertainties, and worst-case gain analysis is performed to quantify robustness. The transient response of the AVR with the proposed PID controller is compared with other heuristic controllers such as the Flower Pollination Algorithm, Teaching-Learning-based Optimization, Pessen Integral Rule, and Zeigler-Nichols methods. By measuring the peak closed-loop gain of the AVR with the controller and adding uncertainty to the AVR's field exciter and amplifier, the robustness of proposed controller is determined. Plotting the performance degradation curves yields robust stability margins and the accompanying maximum uncertainty that the AVR can withstand without compromising its stability or performance. Based on the degradation curves, robust stability margin of the V-Tiger PID controller is estimated at 3.5. The worst-case peak gains are also estimated using the performance degradation curves. Future research directions include exploring novel optimization techniques for further enhancing control performance in various industrial applications.

摘要

本文对自动电压调节器(AVR)系统中PID控制器的实现与分析进行了全面研究。引入了一种新颖的调谐技术,即基于虚拟时间响应的迭代增益评估与重新设计(V-Tiger),以迭代调整PID增益,实现最优控制性能。该研究首先建立了AVR系统的数学模型,并使用佩森积分规则初始化PID增益。然后进行虚拟时间响应分析,以评估系统性能,接着在V-Tiger框架内使用粒子群优化(PSO)进行迭代增益调整。利用MATLAB仿真实现了包括V-Tiger PID控制器在内的各种控制器,并从瞬态响应、稳定性和控制信号生成等方面对它们的性能进行了比较。进行了鲁棒性分析,以评估系统在不确定性下的稳定性,并进行了最坏情况增益分析,以量化鲁棒性。将所提出的PID控制器的AVR瞬态响应与其他启发式控制器进行了比较,如花粉授粉算法、基于教学学习的优化、佩森积分规则和齐格勒-尼科尔斯方法。通过测量带有控制器的AVR的峰值闭环增益,并在AVR的励磁机和放大器中加入不确定性,确定了所提出控制器的鲁棒性。绘制性能下降曲线可得出鲁棒稳定裕度以及AVR在不影响其稳定性或性能的情况下能够承受的最大不确定性。根据下降曲线,估计V-Tiger PID控制器的鲁棒稳定裕度为3.5。还使用性能下降曲线估计了最坏情况峰值增益。未来的研究方向包括探索新颖的优化技术,以进一步提高各种工业应用中的控制性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbdb/11371831/fbae8d8a83d5/41598_2024_58481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验