Suppr超能文献

LightPRA:一种用于自动物理康复运动评估的轻量级时间卷积网络。

LightPRA: A Lightweight Temporal Convolutional Network for Automatic Physical Rehabilitation Exercise Assessment.

机构信息

Research Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, UK; School of Information Technology, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Vic, Australia.

Department of Computer Science, Swansea University, Swansea, UK.

出版信息

Comput Biol Med. 2024 May;173:108382. doi: 10.1016/j.compbiomed.2024.108382. Epub 2024 Mar 25.

Abstract

Research evidence shows that physical rehabilitation exercises prescribed by medical experts can assist in restoring physical function, improving life quality, and promoting independence for physically disabled individuals. In response to the absence of immediate expert feedback on performed actions, developing a Human Action Evaluation (HAE) system emerges as a valuable automated solution, addressing the need for accurate assessment of exercises and guidance during physical rehabilitation. Previous HAE systems developed for the rehabilitation exercises have focused on developing models that utilize skeleton data as input to compute a quality score for each action performed by the patient. However, existing studies have focused on improving scoring performance while often overlooking computational efficiency. In this research, we propose LightPRA (Light Physical Rehabilitation Assessment) system, an innovative architectural solution based on a Temporal Convolutional Network (TCN), which harnesses the capabilities of dilated causal Convolutional Neural Networks (CNNs). This approach efficiently captures complex temporal features and characteristics of the skeleton data with lower computational complexity, making it suitable for real-time feedback provided on resource-constrained devices such as Internet of Things (IoT) devices and Edge computing frameworks. Through empirical analysis performed on the University of Idaho-Physical Rehabilitation Movement Data (UI-PRMD) and KInematic assessment of MOvement for remote monitoring of physical REhabilitation (KIMORE) datasets, our proposed LightPRA model demonstrates superior performance over several state-of-the-art approaches such as Spatial-Temporal Graph Convolutional Network (STGCN) and Long Short-Term Memory (LSTM)-based models in scoring human activity performance, while exhibiting lower computational cost and complexity.

摘要

研究证据表明,医学专家开出的物理康复运动可以帮助身体残障人士恢复身体机能、提高生活质量和促进独立生活。针对执行动作时缺乏即时专家反馈的问题,开发人类动作评估(HAE)系统成为了一种有价值的自动化解决方案,以满足物理康复过程中对运动评估和指导的准确需求。之前针对康复运动开发的 HAE 系统专注于开发使用骨骼数据作为输入的模型,以计算患者执行的每个动作的质量得分。然而,现有研究侧重于提高评分性能,而往往忽略了计算效率。在这项研究中,我们提出了 LightPRA(轻量物理康复评估)系统,这是一种基于时间卷积网络(TCN)的创新架构解决方案,利用扩张因果卷积神经网络(CNN)的能力。这种方法可以高效地捕获骨骼数据的复杂时间特征和特征,具有较低的计算复杂度,因此非常适合在资源受限的设备(如物联网(IoT)设备和边缘计算框架)上提供实时反馈。通过对爱达荷大学物理康复运动数据(UI-PRMD)和用于远程监控物理康复的运动的运动学评估(KIMORE)数据集进行实证分析,我们提出的 LightPRA 模型在评分人体活动性能方面的表现优于几种最先进的方法,如时空图卷积网络(STGCN)和基于长短期记忆(LSTM)的模型,同时具有较低的计算成本和复杂度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验