Suppr超能文献

基于帧拓扑融合的层次图卷积用于物理康复训练的自动评估

Frame topology fusion-based hierarchical graph convolution for automatic assessment of physical rehabilitation exercises.

作者信息

Zhang Shaohui, Han Qiuying, Wang Peng, Li Junjie

机构信息

School of Artificial Intelligence, Zhoukou Normal University, Zhoukou, 466001, China.

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China.

出版信息

Sci Rep. 2025 Jul 23;15(1):26720. doi: 10.1038/s41598-025-12020-8.

Abstract

Stroke rehabilitation movements are significantly influenced by patient subjectivity, leading to challenges in capturing subtle differences and temporal characteristics of patient motions. Existing methods typically focus on adjacent joint movements, overlooking the intricate interdependencies among body joints. Moreover, they lack the capacity to assess motion quality based on diverse temporal characteristics. To address these challenges, we propose a Frame Topology Fusion Hierarchical Graph Convolution Network (FTF-HGCN). This method aims to provide a more precise assessment of rehabilitation movement quality by effectively modeling both spatial and temporal features. First, this method combines nearby and distant keypoints to construct a fused topology structure for obtaining the enhanced motion representation. This allows the network to focus on joints with larger motion amplitudes. Second, based on the fused topology structure, a learnable topological matrix is established for each action frame to capture subtle differences between patient movements. Finally, a hierarchical temporal convolution attention module is employed to integrate motion feature information across different time sequences. Subsequently, a fully connected layer is used to output the predicted quality score of rehabilitation movements. Extensive experiments were conducted on KIMORE and UI-PRMD datasets, achieving best performance on relevant evaluation metrics (MAD: 13.4[Formula: see text], RMSE: 39.8[Formula: see text], MAPE: 7.6[Formula: see text]). This shows that the proposed FTF-HGCN method is capable of delivering accurate evaluations and offering superior support for the home-based rehabilitation of stroke patients.

摘要

中风康复运动受患者主观因素影响显著,这给捕捉患者运动的细微差异和时间特征带来了挑战。现有方法通常侧重于相邻关节运动,而忽略了身体关节之间复杂的相互依存关系。此外,它们缺乏基于不同时间特征评估运动质量的能力。为应对这些挑战,我们提出了一种帧拓扑融合分层图卷积网络(FTF-HGCN)。该方法旨在通过有效建模空间和时间特征,更精确地评估康复运动质量。首先,此方法结合附近和远处的关键点来构建融合拓扑结构,以获得增强的运动表示。这使网络能够关注运动幅度较大的关节。其次,基于融合拓扑结构为每个动作帧建立一个可学习的拓扑矩阵,以捕捉患者运动之间的细微差异。最后,采用分层时间卷积注意力模块来整合不同时间序列中的运动特征信息。随后,使用全连接层输出康复运动的预测质量得分。我们在KIMORE和UI-PRMD数据集上进行了广泛实验,并在相关评估指标上取得了最佳性能(平均绝对偏差:13.4[公式:见原文],均方根误差:39.8[公式:见原文],平均绝对百分比误差:7.6[公式:见原文])。这表明所提出的FTF-HGCN方法能够提供准确的评估,并为中风患者的居家康复提供更好的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d3/12287435/83a5f2559c2c/41598_2025_12020_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验