The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel.
Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel.
RNA. 2024 Jun 17;30(7):749-759. doi: 10.1261/rna.079801.123.
Cancer cells can manipulate immune cells and escape from the immune system response. Quantifying the molecular changes that occur when an immune cell touches a tumor cell can increase our understanding of the underlying mechanisms. Recently, it became possible to perform such measurements in situ-for example, using expansion sequencing, which enabled in situ sequencing of genes with super-resolution. We systematically examined whether individual immune cells from specific cell types express genes differently when in physical proximity to individual tumor cells. First, we demonstrated that a dense mapping of genes in situ can be used for the segmentation of cell bodies in 3D, thus improving our ability to detect likely touching cells. Next, we used three different computational approaches to detect the molecular changes that are triggered by proximity: differential expression analysis, tree-based machine learning classifiers, and matrix factorization analysis. This systematic analysis revealed tens of genes, in specific cell types, whose expression separates immune cells that are proximal to tumor cells from those that are not proximal, with a significant overlap between the different detection methods. Remarkably, an order of magnitude more genes are triggered by proximity to tumor cells in CD8 T cells compared to CD4 T cells, in line with the ability of CD8 T cells to directly bind major histocompatibility complex (MHC) class I on tumor cells. Thus, in situ sequencing of an individual biopsy can be used to detect genes likely involved in immune-tumor cell-cell interactions. The data used in this manuscript and the code of the InSituSeg, machine learning, cNMF, and Moran's methods are publicly available at doi:10.5281/zenodo.7497981.
癌细胞可以操纵免疫细胞并逃避免疫系统的反应。量化免疫细胞接触肿瘤细胞时发生的分子变化,可以增进我们对潜在机制的理解。最近,人们已经可以在原位进行此类测量,例如使用扩展测序,这使得具有超分辨率的基因在原位测序成为可能。我们系统地研究了来自特定细胞类型的单个免疫细胞在与单个肿瘤细胞物理接近时是否会以不同的方式表达基因。首先,我们证明了可以在原位对基因进行密集映射,以用于 3D 中的细胞体分割,从而提高了我们检测可能接触的细胞的能力。接下来,我们使用三种不同的计算方法来检测由接近引发的分子变化:差异表达分析、基于树的机器学习分类器和矩阵分解分析。这种系统分析揭示了数十种基因,在特定的细胞类型中,其表达将与肿瘤细胞接近的免疫细胞与不接近的免疫细胞区分开来,不同的检测方法之间存在显著重叠。值得注意的是,与 CD4 T 细胞相比,CD8 T 细胞中与肿瘤细胞接近所触发的基因数量多了一个数量级,这与 CD8 T 细胞能够直接与肿瘤细胞上的主要组织相容性复合物(MHC)I 结合的能力一致。因此,对单个活检进行原位测序可用于检测可能涉及免疫-肿瘤细胞-细胞相互作用的基因。本文中使用的数据和 InSituSeg、机器学习、cNMF 和 Moran 方法的代码可在 doi:10.5281/zenodo.7497981 处获得。