Suppr超能文献

一种使用乳腺 X 光图像进行乳腺癌检测的新型机器学习模型。

A novel machine learning model for breast cancer detection using mammogram images.

机构信息

Department of Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore, 641042, India.

Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India.

出版信息

Med Biol Eng Comput. 2024 Jul;62(7):2247-2264. doi: 10.1007/s11517-024-03057-4. Epub 2024 Apr 5.

Abstract

The most fatal disease affecting women worldwide now is breast cancer. Early detection of breast cancer enhances the likelihood of a full recovery and lowers mortality. Based on medical imaging, researchers from all around the world are developing breast cancer screening technologies. Due to their rapid progress, deep learning algorithms have caught the interest of many in the field of medical imaging. This research proposes a novel method in mammogram image feature extraction with classification and optimization using machine learning in breast cancer detection. The input image has been processed for noise removal, smoothening, and normalization. The input image features were extracted using probabilistic principal component analysis for detecting the presence of tumors in mammogram images. The extracted tumor region is classified using the Naïve Bayes classifier and transfer integrated convolution neural networks. The classified output has been optimized using firefly binary grey optimization and metaheuristic moth flame lion optimization. The experimental analysis has been carried out in terms of different parameters based on datasets. The proposed framework used an ensemble model for breast cancer that made use of the proposed Bayes + FBGO and TCNN + MMFLO classifier and optimizer for diverse mammography image datasets. The INbreast dataset was evaluated using the proposed Bayes + FBGO and TCNN + MMFLO classifiers, which achieved 95% and 98% accuracy, respectively.

摘要

目前全球范围内对女性危害最大的致命疾病是乳腺癌。乳腺癌的早期发现提高了完全康复的可能性并降低了死亡率。基于医学影像,来自世界各地的研究人员正在开发乳腺癌筛查技术。由于其快速发展,深度学习算法引起了医学成像领域许多人的兴趣。这项研究提出了一种新的方法,用于使用机器学习在乳腺癌检测中进行乳房 X 光图像特征提取、分类和优化。输入图像已经过去噪、平滑和归一化处理。使用概率主成分分析提取输入图像特征,以检测乳房 X 光图像中肿瘤的存在。使用朴素贝叶斯分类器和迁移集成卷积神经网络对提取的肿瘤区域进行分类。使用萤火虫二进制灰度优化和元启发式 moth flame lion 优化对分类输出进行优化。基于数据集,根据不同的参数进行了实验分析。该框架针对不同的乳房 X 光图像数据集,使用了一种基于贝叶斯+FBGO 和 TCNN+MMFLO 分类器和优化器的集成模型,用于乳腺癌检测。该框架在 INbreast 数据集上进行了评估,贝叶斯+FBGO 和 TCNN+MMFLO 分类器的准确率分别为 95%和 98%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验