文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多功能褐藻糖胶负载 Zn-MOF 封装的微针用于治疗耐甲氧西林金黄色葡萄球菌感染的伤口。

Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing.

机构信息

Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.

University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.

出版信息

J Nanobiotechnology. 2024 Apr 4;22(1):152. doi: 10.1186/s12951-024-02398-4.


DOI:10.1186/s12951-024-02398-4
PMID:38575979
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10996189/
Abstract

Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.

摘要

由于以下几个因素,感染性伤口的愈合仍然是临床实践中的一个挑战:(I)各种病原体引起的耐药性感染,(II)持续的炎症阻碍组织再生,以及(III)病原体在细胞内持续存在并逃避抗生素治疗的能力。微针贴片(MNs)因其有效的、无痛的皮下药物输送而得到认可,如果与抗菌功能和组织再生潜力相结合,将极大地促进伤口愈合。一种具有亚细胞靶向能力和包含新型抗菌成分的多功能药物,如果负载到 MNs 上,可能对伤口感染产生极好的治疗效果。在这项研究中,我们合成了负载低分子量岩藻聚糖(Fu)的沸石咪唑酯骨架-8 纳米颗粒(ZIF-8 NPs),并进一步用透明质酸(HA)包被,得到了一种多功能的 HAZ@Fu NPs,它可以抑制耐甲氧西林金黄色葡萄球菌(MRSA)的生长并促进巨噬细胞中 M2 极化。我们将 HAZ@Fu NPs 与光交联的明胶甲基丙烯酰(GelMA)混合,并将其装载到 MNs 的尖端(HAZ@Fu MNs)中,然后将其施用于 MRSA 感染的全层皮肤伤口的小鼠模型中。MNs 能够穿透皮肤屏障,将 HAZ@Fu NPs 递送到真皮层。由于感染组织中的细胞广泛表达 HA 受体 CD44,我们还证实了 HA 赋予纳米颗粒在亚细胞水平靶向 MRSA 的能力。体外和体内小鼠研究表明,MNs 能够将 HAZ@Fu NPs 递送到真皮层深处。并且,由于 HA 涂层的存在,HAZ@Fu NPs 可以靶向亚细胞水平存活的 MRSA。有效成分,如锌离子、Fu 和透明质酸,可持续释放,有助于发挥抗菌活性、减轻炎症、促进上皮再生和促进新血管生成。通过与 HAZ@Fu 共培养后的巨噬细胞的 RNA 测序,京都基因与基因组百科全书(KEGG)途径分析显示,与伤口愈合相关的生物功能可能通过 PI3K-Akt 途径得到促进。结果表明,HAZ@Fu NPs 与可生物降解的 MNs 的协同应用可能成为治疗感染性伤口的重要辅助手段。其驱动生物学效应的复杂机制值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/928568bfc174/12951_2024_2398_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/ec335a7917c4/12951_2024_2398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/c45a32c524bc/12951_2024_2398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/c25168e4e1e9/12951_2024_2398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/46042ec679eb/12951_2024_2398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/dc540deeeb00/12951_2024_2398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/b6d5bf9320f1/12951_2024_2398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/6a47e106e8b3/12951_2024_2398_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/2d2f0322d1db/12951_2024_2398_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/928568bfc174/12951_2024_2398_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/ec335a7917c4/12951_2024_2398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/c45a32c524bc/12951_2024_2398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/c25168e4e1e9/12951_2024_2398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/46042ec679eb/12951_2024_2398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/dc540deeeb00/12951_2024_2398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/b6d5bf9320f1/12951_2024_2398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/6a47e106e8b3/12951_2024_2398_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/2d2f0322d1db/12951_2024_2398_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/10996189/928568bfc174/12951_2024_2398_Fig9_HTML.jpg

相似文献

[1]
Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing.

J Nanobiotechnology. 2024-4-4

[2]
Zn-MOF Encapsulated Antibacterial and Degradable Microneedles Array for Promoting Wound Healing.

Adv Healthc Mater. 2021-6

[3]
Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: A proof of concept study.

Eur J Pharm Biopharm. 2019-12-27

[4]
Polydopamine-armored zeolitic imidazolate framework-8-incorporated zwitterionic hydrogel with multifunctional properties for infected wound healing.

Int J Biol Macromol. 2024-8

[5]
Persistent Production of Reactive Oxygen Species with ZnGeO:Cu Nanorod-Loaded Microneedles for Methicillin-Resistant Infectious Wound Healing.

ACS Appl Mater Interfaces. 2022-4-20

[6]
An Integrated Therapeutic and Preventive Nanozyme-Based Microneedle for Biofilm-Infected Diabetic Wound Healing.

Adv Healthc Mater. 2023-12

[7]
Copper-gallate metal-organic framework encapsulated multifunctional konjac glucomannan microneedles patches for promoting wound healing.

Int J Biol Macromol. 2024-2

[8]
Chloramphenicol encapsulated in poly-ε-caprolactone-pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds.

Int J Nanomedicine. 2015-4-15

[9]
Porcupine-inspired microneedles coupled with an adhesive back patching as dressing for accelerating diabetic wound healing.

Acta Biomater. 2023-4-1

[10]
The mesenchymal stromal cell secretome promotes tissue regeneration and increases macrophage infiltration in acute and methicillin-resistant Staphylococcus aureus-infected skin wounds in vivo.

Cytotherapy. 2024-11

引用本文的文献

[1]
Bioengineered microneedles and nanomedicine as therapeutic platform for tissue regeneration.

J Nanobiotechnology. 2025-8-19

[2]
CD44 signaling in skin wound healing and regeneration.

J Transl Med. 2025-8-7

[3]
Multifunctional astragalus polysaccharide composited microneedle promotes oral ulcers healing by inhibiting ferroptosis via Nrf2/HO-1/SLC7A11 axis.

Mater Today Bio. 2025-5-16

[4]
Multifunctional hydrogel with mild photothermal properties enhances diabetic wound repair by targeting MRSA energy metabolism.

J Nanobiotechnology. 2025-5-26

[5]
Progress of microneedle targeted modulation technology in the reconstruction of immune microenvironment in diabetic wounds.

Eur J Med Res. 2025-5-20

[6]
Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective.

AAPS PharmSciTech. 2025-1-8

[7]
Application of metal-organic frameworks in infectious wound healing.

J Nanobiotechnology. 2024-7-1

[8]
Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations.

Pharmaceutics. 2024-6-16

本文引用的文献

[1]
Scarless wound healing programmed by core-shell microneedles.

Nat Commun. 2023-6-10

[2]
Bioinspired Adaptable Indwelling Microneedles for Treatment of Diabetic Ulcers.

Adv Mater. 2023-6

[3]
Microneedles for tissue regeneration.

Mater Today Bio. 2023-2-11

[4]
Bacteria-Activated Dual pH- and Temperature-Responsive Hydrogel for Targeted Elimination of Infection and Improved Wound Healing.

ACS Appl Mater Interfaces. 2022-11-23

[5]
Fucoidan-based nanoparticles: Preparations and applications.

Int J Biol Macromol. 2022-9-30

[6]
Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis.

Cell Mol Immunol. 2022-8

[7]
Dissolving microneedles: Applications and growing therapeutic potential.

J Control Release. 2022-8

[8]
A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia.

Biomater Adv. 2022-2

[9]
Bone-targeted ICG/Cyt c@ZZF-8 nanoparticles based on the zeolitic imidazolate framework-8: a new synergistic photodynamic and protein therapy for bone metastasis.

Biomater Sci. 2022-5-4

[10]
GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing.

J Nanobiotechnology. 2022-3-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索