Stark Philipp, Hasenbein Lisa, Kasneci Enkelejda, Göllner Richard
University of Tübingen, Hector Research Institute, Europastraße 6, 72072 Tübingen, Germany.
Technical University of Munich, Chair for Human-Centered Technologies for Learning, Arcisstraße 21, 80333 München, Germany.
MethodsX. 2024 Mar 15;12:102662. doi: 10.1016/j.mex.2024.102662. eCollection 2024 Jun.
This article provides a step-by-step guideline for measuring and analyzing visual attention in 3D virtual reality (VR) environments based on eye-tracking data. We propose a solution to the challenges of obtaining relevant eye-tracking information in a dynamic 3D virtual environment and calculating interpretable indicators of learning and social behavior. With a method called "gaze-ray casting," we simulated 3D-gaze movements to obtain information about the gazed objects. This information was used to create graphical models of visual attention, establishing attention networks. These networks represented participants' gaze transitions between different entities in the VR environment over time. Measures of centrality, distribution, and interconnectedness of the networks were calculated to describe the network structure. The measures, derived from graph theory, allowed for statistical inference testing and the interpretation of participants' visual attention in 3D VR environments. Our method provides useful insights when analyzing students' learning in a VR classroom, as reported in a corresponding evaluation article with = 274 participants. •Guidelines on implementing gaze-ray casting in VR using the Unreal Engine and the HTC VIVE Pro Eye.•Creating gaze-based attention networks and analyzing their network structure.•Implementation tutorials and the Open Source software code are provided via OSF: https://osf.io/pxjrc/?view_only=1b6da45eb93e4f9eb7a138697b941198.
本文提供了一套基于眼动追踪数据在3D虚拟现实(VR)环境中测量和分析视觉注意力的分步指南。我们针对在动态3D虚拟环境中获取相关眼动追踪信息以及计算可解释的学习和社交行为指标的挑战提出了一种解决方案。通过一种名为“注视光线投射”的方法,我们模拟了3D注视运动以获取有关被注视对象的信息。这些信息被用于创建视觉注意力的图形模型,建立注意力网络。这些网络代表了参与者在VR环境中不同实体之间随时间的注视转换。计算网络的中心性、分布和互连性指标以描述网络结构。这些源自图论的指标允许进行统计推断测试并解释参与者在3D VR环境中的视觉注意力。如在一篇有274名参与者的相应评估文章中所报道的,我们的方法在分析VR课堂中学生的学习情况时提供了有用的见解。•关于使用虚幻引擎和HTC VIVE Pro Eye在VR中实施注视光线投射的指南。•创建基于注视的注意力网络并分析其网络结构。•通过OSF提供实施教程和开源软件代码:https://osf.io/pxjrc/?view_only=1b6da45eb93e4f9eb7a138697b941198。