Kumar Bisai Milan, Łosiewicz Justyna, Sotorrios Lia, Nichol Gary S, Dominey Andrew P, Cowley Michael J, Thomas Stephen P, Macgregor Stuart A, Ingleson Michael J
EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom.
School of Health Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202404848. doi: 10.1002/anie.202404848. Epub 2024 May 6.
C-H metalation is the most efficient method to prepare aryl-zinc and -aluminium complexes that are ubiquitous nucleophiles. Virtually all C-H metalation routes to form Al/Zn organometallics require stoichiometric, strong Brønsted bases with no base-catalyzed reactions reported. Herein we present a catalytic in amine/ammonium salt (EtN/[(EtN)H]) C-H metalation process to form aryl-zinc and aryl-aluminium complexes. Key to this approach is coupling an endergonic C-H metalation step with a sufficiently exergonic dehydrocoupling step between the ammonium salt by-product of C-H metalation ([(EtN)H]) and a Zn-H or Al-Me containing complex. This step, forming H/MeH, makes the overall cycle exergonic while generating more of the reactive metal electrophile. Mechanistic studies supported by DFT calculations revealed metal-specific dehydrocoupling pathways, with the divergent reactivity due to the different metal valency (which impacts the accessibility of amine-free cationic metal complexes) and steric environment. Notably, dehydrocoupling in the zinc system proceeds through a ligand-mediated pathway involving protonation of the β-diketiminate C position. Given this process is applicable to two disparate metals (Zn and Al), other main group metals and ligand sets are expected to be amenable to this transition metal-free, catalytic C-H metalation.
碳-氢金属化是制备芳基锌和芳基铝配合物最有效的方法,这些配合物是普遍存在的亲核试剂。几乎所有形成铝/锌有机金属化合物的碳-氢金属化路线都需要化学计量的强碱,目前尚未报道有碱催化反应。在此,我们展示了一种在胺/铵盐(EtN/[(EtN)H])中进行催化碳-氢金属化的过程,以形成芳基锌和芳基铝配合物。这种方法的关键在于将一个吸能的碳-氢金属化步骤与一个足够放能的脱氢偶联步骤相结合,该脱氢偶联步骤发生在碳-氢金属化的铵盐副产物([(EtN)H])与含锌-氢或铝-甲基的配合物之间。这一步形成氢气/甲基氢,使整个循环放能,同时生成更多的活性金属亲电试剂。由密度泛函理论计算支持的机理研究揭示了金属特异性的脱氢偶联途径,其反应性不同是由于不同的金属价态(这影响了无胺阳离子金属配合物的可及性)和空间环境。值得注意的是,锌体系中的脱氢偶联通过配体介导的途径进行,涉及β-二酮亚胺碳位置的质子化。鉴于此过程适用于两种不同的金属(锌和铝),预计其他主族金属和配体组合也适用于这种无过渡金属的催化碳-氢金属化反应。