The Novo Nordisk Foundation Center for Biosustainability, DTU, Kongens Lyngby 2800, Denmark.
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia 4067, Australia.
ACS Synth Biol. 2024 Apr 19;13(4):1205-1214. doi: 10.1021/acssynbio.3c00662. Epub 2024 Apr 5.
This paper presents Maud, a command-line application that implements Bayesian statistical inference for kinetic models of biochemical metabolic reaction networks. Maud takes into account quantitative information from omics experiments and background knowledge as well as structural information about kinetic mechanisms, regulatory interactions, and enzyme knockouts. Our paper reviews the existing options in this area, presents a case study illustrating how Maud can be used to analyze a metabolic network, and explains the biological, statistical, and computational design decisions underpinning Maud.
本文介绍了 Maud,这是一个命令行应用程序,它为生化代谢反应网络的动力学模型实现了贝叶斯统计推断。Maud 考虑了来自组学实验和背景知识的定量信息,以及关于动力学机制、调控相互作用和酶敲除的结构信息。我们的论文回顾了该领域的现有选项,展示了一个案例研究,说明了如何使用 Maud 来分析代谢网络,并解释了支持 Maud 的生物学、统计学和计算设计决策。