Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
Metab Eng. 2020 Sep;61:197-205. doi: 10.1016/j.ymben.2020.03.001. Epub 2020 Mar 13.
Kinetic models predict the metabolic flows by directly linking metabolite concentrations and enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that faithfully reproduce the effect of different genetic or environmental perturbations remains an open challenge due to the intractability of existing algorithms. This paper introduces Kinetics-based Fluxomics Integration Tool (K-FIT), a robust kinetic parameterization workflow that leverages a novel decomposition approach to identify steady-state fluxes in response to genetic perturbations followed by a gradient-based update of kinetic parameters until predictions simultaneously agree with the fluxomic data in all perturbed metabolic networks. The applicability of K-FIT to large-scale models is demonstrated by parameterizing an expanded kinetic model for E. coli (307 reactions and 258 metabolites) using fluxomic data from six mutants. The achieved thousand-fold speed-up afforded by K-FIT over meta-heuristic approaches is transformational enabling follow-up robustness of inference analyses and optimal design of experiments to inform metabolic engineering strategies.
动力学模型通过将代谢物浓度和酶水平直接与反应通量联系起来,预测代谢通量。由于现有算法的复杂性,能够真实再现不同遗传或环境扰动影响的基于机体的动力学模型的稳健参数化仍然是一个未解决的挑战。本文介绍了基于动力学的通量组学集成工具(K-FIT),这是一种稳健的动力学参数化工作流程,利用一种新的分解方法来识别稳态通量,以响应遗传扰动,然后基于梯度更新动力学参数,直到预测同时与所有受扰代谢网络中的通量组学数据一致。通过使用通量组学数据对六种突变体进行参数化,证明了 K-FIT 对大规模模型的适用性,该模型扩展了大肠杆菌(307 个反应和 258 个代谢物)的动力学模型。与启发式方法相比,K-FIT 实现了千倍的速度提升,这为后续稳健性推理分析和实验优化设计提供了支持,从而为代谢工程策略提供信息。