Ha Annie, Khoo Amanda, Ignatchenko Vladimir, Khan Shahbaz, Waas Matthew, Vesprini Danny, Liu Stanley K, Nyalwidhe Julius O, Semmes Oliver John, Boutros Paul C, Kislinger Thomas
Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
J Proteome Res. 2024 May 3;23(5):1768-1778. doi: 10.1021/acs.jproteome.4c00009. Epub 2024 Apr 5.
Biofluids contain molecules in circulation and from nearby organs that can be indicative of disease states. Characterizing the proteome of biofluids with DIA-MS is an emerging area of interest for biomarker discovery; yet, there is limited consensus on DIA-MS data analysis approaches for analyzing large numbers of biofluids. To evaluate various DIA-MS workflows, we collected urine from a clinically heterogeneous cohort of prostate cancer patients and acquired data in DDA and DIA scan modes. We then searched the DIA data against urine spectral libraries generated using common library generation approaches or a library-free method. We show that DIA-MS doubles the sample throughput compared to standard DDA-MS with minimal losses to peptide detection. We further demonstrate that using a sample-specific spectral library generated from individual urines maximizes peptide detection compared to a library-free approach, a pan-human library, or libraries generated from pooled, fractionated urines. Adding urine subproteomes, such as the urinary extracellular vesicular proteome, to the urine spectral library further improves the detection of prostate proteins in unfractionated urine. Altogether, we present an optimized DIA-MS workflow and provide several high-quality, comprehensive prostate cancer urine spectral libraries that can streamline future biomarker discovery studies of prostate cancer using DIA-MS.
生物流体包含循环中的分子以及来自附近器官的分子,这些分子可能指示疾病状态。用数据独立采集质谱法(DIA-MS)表征生物流体的蛋白质组是生物标志物发现领域一个新兴的研究热点;然而,对于分析大量生物流体的DIA-MS数据分析方法,目前尚未达成广泛共识。为了评估各种DIA-MS工作流程,我们从临床异质性前列腺癌患者队列中收集尿液,并以数据依赖采集(DDA)和DIA扫描模式获取数据。然后,我们将DIA数据与使用常见文库生成方法或无文库方法生成的尿液光谱文库进行比对。我们表明,与标准DDA-MS相比,DIA-MS的样品通量提高了一倍,而肽段检测的损失最小。我们进一步证明,与无文库方法、泛人类文库或从混合、分级尿液生成的文库相比,使用从个体尿液生成的样品特异性光谱文库可使肽段检测最大化。将尿液亚蛋白质组,如尿液细胞外囊泡蛋白质组,添加到尿液光谱文库中,可进一步提高未分级尿液中前列腺蛋白的检测。总之,我们提出了一种优化的DIA-MS工作流程,并提供了几个高质量、全面的前列腺癌尿液光谱文库,可简化未来使用DIA-MS进行前列腺癌生物标志物发现的研究。