Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2201, Japan.
Advanced Medical Engineering Research Institute, University of Hyogo, 3-264 Kamiya-cho, Himeji, Hyogo, 670-0836, Japan.
Sci Rep. 2024 Apr 5;14(1):8004. doi: 10.1038/s41598-024-58810-4.
Pelvic fractures pose significant challenges in medical diagnosis due to the complex structure of the pelvic bones. Timely diagnosis of pelvic fractures is critical to reduce complications and mortality rates. While computed tomography (CT) is highly accurate in detecting pelvic fractures, the initial diagnostic procedure usually involves pelvic X-rays (PXR). In recent years, many deep learning-based methods have been developed utilizing ImageNet-based transfer learning for diagnosing hip and pelvic fractures. However, the ImageNet dataset contains natural RGB images which are different than PXR. In this study, we proposed a two-step transfer learning approach that improved the diagnosis of pelvic fractures in PXR images. The first step involved training a deep convolutional neural network (DCNN) using synthesized PXR images derived from 3D-CT by digitally reconstructed radiographs (DRR). In the second step, the classification layers of the DCNN were fine-tuned using acquired PXR images. The performance of the proposed method was compared with the conventional ImageNet-based transfer learning method. Experimental results demonstrated that the proposed DRR-based method, using 20 synthesized PXR images for each CT, achieved superior performance with the area under the receiver operating characteristic curves (AUROCs) of 0.9327 and 0.8014 for visible and invisible fractures, respectively. The ImageNet-based method yields AUROCs of 0.8908 and 0.7308 for visible and invisible fractures, respectively.
骨盆骨折由于骨盆骨骼的复杂结构,在医学诊断中构成重大挑战。及时诊断骨盆骨折对于降低并发症和死亡率至关重要。虽然计算机断层扫描(CT)在检测骨盆骨折方面非常准确,但初始诊断程序通常涉及骨盆 X 射线(PXR)。近年来,许多基于深度学习的方法已经被开发出来,利用基于 ImageNet 的迁移学习来诊断髋部和骨盆骨折。然而,ImageNet 数据集包含的是自然 RGB 图像,与 PXR 不同。在这项研究中,我们提出了一种两步迁移学习方法,用于改善 PXR 图像中骨盆骨折的诊断。第一步涉及使用从 3D-CT 通过数字重建射线照相术(DRR)获得的合成 PXR 图像来训练深度卷积神经网络(DCNN)。在第二步中,使用获取的 PXR 图像对 DCNN 的分类层进行微调。将所提出的方法的性能与传统的基于 ImageNet 的迁移学习方法进行了比较。实验结果表明,所提出的基于 DRR 的方法,对于每幅 CT 使用 20 张合成 PXR 图像,对于可见和不可见骨折,其接收者操作特征曲线下的面积(AUROCs)分别为 0.9327 和 0.8014,表现出卓越的性能。基于 ImageNet 的方法对于可见和不可见骨折的 AUROCs 分别为 0.8908 和 0.7308。