Suppr超能文献

人工智能(AI)与人类在髋部骨折检测中的比较。

Artificial intelligence (AI) vs. human in hip fracture detection.

作者信息

Twinprai Nattaphon, Boonrod Artit, Boonrod Arunnit, Chindaprasirt Jarin, Sirithanaphol Wichien, Chindaprasirt Prinya, Twinprai Prin

机构信息

Trauma Unit, Department of Orthopedics, Srinagarind Hospital, Khon Kaen University, Thailand.

Sport Unit, Department of Orthopedics, Srinagarind Hospital, Khon Kaen University, Thailand.

出版信息

Heliyon. 2022 Oct 27;8(11):e11266. doi: 10.1016/j.heliyon.2022.e11266. eCollection 2022 Nov.

Abstract

OBJECTIVE

This study aimed to assess the diagnostic accuracy and sensitivity of a YOLOv4-tiny AI model for detecting and classifying hip fractures types.

MATERIALS AND METHODS

In this retrospective study, a dataset of 1000 hip and pelvic radiographs was divided into a training set consisting of 450 fracture and 450 normal images (900 images total) and a testing set consisting of 50 fracture and 50 normal images (100 images total). The training set images were each manually augmented with a bounding box drawn around each hip, and each bounding box was manually labeled either (1) normal, (2) femoral neck fracture, (3) intertrochanteric fracture, or (4) subtrochanteric fracture. Next, a deep convolutional neural network YOLOv4-tiny AI model was trained using the augmented training set images, and then model performance was evaluated with the testing set images. Human doctors then evaluated the same testing set images, and the performances of the model and doctors were compared. The testing set contained no crossover data.

RESULTS

The resulting output images revealed that the AI model produced bounding boxes around each hip region and classified the fracture and normal hip regions with a sensitivity of 96.2%, specificity of 94.6%, and an accuracy of 95%. The human doctors performed with a sensitivity ranging from 69.2 to 96.2%. Compared with human doctors, the detection rate sensitivity of the model was significantly better than a general practitioner and first-year residents and equivalent to specialist doctors.

CONCLUSIONS

This model showed hip fracture detection sensitivity comparable to well-trained radiologists and orthopedists and classified hip fractures highly accurately.

摘要

目的

本研究旨在评估YOLOv4-tiny人工智能模型检测和分类髋部骨折类型的诊断准确性和敏感性。

材料与方法

在这项回顾性研究中,1000张髋部和骨盆X光片数据集被分为一个训练集,其中包括450张骨折图像和450张正常图像(共900张图像),以及一个测试集,其中包括50张骨折图像和50张正常图像(共100张图像)。训练集图像每张都在每个髋部周围手动绘制一个边界框进行增强,每个边界框被手动标记为(1)正常、(2)股骨颈骨折、(3)转子间骨折或(4)转子下骨折。接下来,使用增强后的训练集图像训练一个深度卷积神经网络YOLOv4-tiny人工智能模型,然后用测试集图像评估模型性能。然后由人类医生评估相同的测试集图像,并比较模型和医生的表现。测试集不包含交叉数据。

结果

生成的输出图像显示,人工智能模型在每个髋部区域周围生成了边界框,并对骨折和正常髋部区域进行了分类,敏感性为96.2%,特异性为94.6%,准确率为95%。人类医生的敏感性范围为69.2%至96.2%。与人类医生相比,该模型的检测率敏感性明显优于普通医生和一年级住院医生,与专科医生相当。

结论

该模型显示出与训练有素的放射科医生和骨科医生相当的髋部骨折检测敏感性,并且对髋部骨折的分类高度准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/9634369/989506aff440/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验