Suppr超能文献

开发和验证一种临床放射组Nomogram 以评估浸润性导管癌患者的 HER2 状态。

Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma.

机构信息

Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China.

Department of Surgical, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China.

出版信息

BMC Cancer. 2022 Aug 10;22(1):872. doi: 10.1186/s12885-022-09967-6.

Abstract

BACKGROUND

The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status.

METHODS

We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set (n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set (n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 ( http://keyan.deepwise.com/ ), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA).

RESULTS

70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827-0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758-0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score (p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904-0.987) in the training set and 0.868 (95%CI: 0.789-0.948; p = 0.123) in the validation set. Moreover, calibration with the p-value of 0.732 using Hosmer-Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram.

CONCLUSION

Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.

摘要

背景

HER2 表达状态的测定对乳腺癌的 HER2 靶向治疗具有重要意义。然而,目前仍缺乏经济、高效、非侵入性的 HER2 评估方法。我们旨在开发一种基于多参数 MRI(包括 ADC 图、T2W1、DCE-T1WI)提取的放射组学评分和临床危险因素的临床放射组学列线图,以评估 HER2 状态。

方法

我们回顾性收集了 2018 年 1 月至 2021 年 3 月期间复旦大学附属肿瘤医院经病理证实的浸润性导管癌患者 214 例,按照 6:4 的比例将该队列随机分为训练集(n=128,42 例 HER2 阳性和 86 例 HER2 阴性)和验证集(n=86,28 例 HER2 阳性和 58 例 HER2 阴性)。对原始和转换的治疗前 mpMRI 图像进行半自动分割和 DeepWise 科学研究平台 v1.6(http://keyan.deepwise.com/)上的手动修改,然后使用 PyRadiomics 库进行放射组学特征提取。基于逻辑回归(LR)和 LASSO 回归的递归特征消除(RFE)用于模型构建前识别最佳特征。采用 LR、线性判别分析(LDA)、支持向量机(SVM)、随机森林(RF)、朴素贝叶斯(NB)和 XGBoost(XGB)算法构建放射组学特征。通过单因素逻辑分析(年龄、肿瘤位置、Ki-67 指数、组织学分级和淋巴结转移)确定独立的临床预测因子。然后,采用多元逻辑回归将具有最佳诊断性能的放射组学特征(Rad 评分)与有意义的临床危险因素相结合,进一步开发临床放射组学模型(列线图)。采用 AUC、DeLong 检验、校准曲线和决策曲线分析(DCA)评估构建模型的判别能力。

结果

214 例患者中,70 例(32.71%)为 HER2 阳性,144 例(67.29%)为 HER2 阴性。保留了 11 个最佳放射组学特征,开发了 6 个放射组学分类器,其中 RF 分类器在训练集中的 AUC 最高,为 0.887(95%CI:0.827-0.947),在验证集中的 AUC 为 0.840(95%CI:0.758-0.922)。我们构建了一个包含 Rad 评分和两个选定临床因素(Ki-67 指数和组织学分级)的列线图,与 Rad 评分相比,该列线图具有更好的判别能力(p=0.374,Delong 检验),在训练集中的 AUC 为 0.945(95%CI:0.904-0.987),在验证集中的 AUC 为 0.868(95%CI:0.789-0.948;p=0.123)。此外,Hosmer-Lemeshow 检验的 p 值为 0.732,表明校准良好,DCA 验证了列线图的获益。

结论

经过大规模验证后,临床放射组学列线图可能有潜力成为临床 HER2 靶向治疗预测中评估 HER2 表达状态的非侵入性工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e78/9364617/233258b821c6/12885_2022_9967_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验