Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
PeerJ. 2024 Apr 4;12:e17185. doi: 10.7717/peerj.17185. eCollection 2024.
Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches.
We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis.
Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms.
Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
心血管疾病是全球范围内的主要死因,对公共健康造成重大影响。动脉粥样硬化性心血管疾病占这些死亡的大多数,动脉粥样硬化是其病理生理进展的初始和最关键阶段。动脉粥样硬化、肠道微生物组的组成和功能之间存在着复杂的关系,而运动可能具有潜在的介导作用。肠道微生物组的适应性和运动干预的可行性为治疗和预防方法提供了新的机会。
我们使用专业数据库(如 PubMed 和 Web of Science)进行了全面的文献综述。本综述重点介绍了元组学技术,特别是宏基因组学和代谢组学,在研究运动干预对肠道微生物组和动脉粥样硬化影响方面的应用。
元组学技术提供了无与伦比的能力,可用于探索运动、微生物组、代谢组和心血管代谢健康之间的复杂联系。本综述强调了宏基因组学和代谢组学的进展、它们在研究中的应用,并探讨了运动如何影响肠道微生物组。我们从代谢角度深入研究了这些元素之间的连接机制。宏基因组学提供了运动后微生物菌株变化的见解,而代谢组学则揭示了代谢物的变化。这些方法一起提供了对运动如何通过特定机制影响动脉粥样硬化的全面理解。
运动对动脉粥样硬化有显著影响,而肠道微生物组则是一个关键的中介。元组学技术为研究肠道微生物组提供了巨大的潜力,但它的方法学需要进一步改进。此外,需要进行更多的大型队列研究,以增强我们对这些因素之间联系的理解。