Dreyer Jan, Ricci Giulia, van den Berg Jeroen, Bhardwaj Vivek, Funk Janina, Armstrong Claire, van Batenburg Vincent, Sine Chance, VanInsberghe Michael A, Marsman Richard, Mandemaker Imke K, di Sanzo Simone, Costantini Juliette, Manzo Stefano G, Biran Alva, Burny Claire, Völker-Albert Moritz, Groth Anja, Spencer Sabrina L, van Oudenaarden Alexander, Mattiroli Francesca
Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
Oncode Institute, The Netherlands.
bioRxiv. 2024 Mar 27:2024.03.22.586291. doi: 10.1101/2024.03.22.586291.
Long-term perturbation of chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyperaccessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. As a result, histone variants usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective chromatin assembly during DNA replication, explaining how at later times the epigenome and cell fate can be altered.
DNA复制过程中染色质组装的长期扰动对表观基因组维持和细胞命运具有深远影响。这些缺陷的早期机制起源尚不清楚。在这里,我们将染色质组装的关键因子染色质组装因子1(CAF-1)的急性降解与单细胞基因组学、定量蛋白质组学和活细胞显微镜技术相结合,以揭示人类细胞中的这些起始机制。CAF-1的缺失立即减慢了DNA复制速度,并使新生DNA具有高度可及性。一种不同于经典DNA损伤信号传导的快速细胞反应被触发,并降低了组蛋白mRNA水平。结果,组蛋白变体的使用及其修饰发生改变,限制了转录保真度,并延迟了单个S期内的染色质成熟。这种多层次反应在有丝分裂后诱导细胞周期停滞。我们的工作揭示了DNA复制过程中染色质组装缺陷的直接后果,解释了随后表观基因组和细胞命运如何被改变。