Suppr超能文献

线粒体亚细胞定位和形态的显著变化伴随着CO浓缩机制的激活。

Dramatic Changes in Mitochondrial Subcellular Location and Morphology Accompany Activation of the CO Concentrating Mechanism.

作者信息

Findinier Justin, Joubert Lydia-Marie, Schmid Michael F, Malkovskiy Andrey, Chiu Wah, Burlacot Adrien, Grossman Arthur R

机构信息

The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA.

SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA.

出版信息

bioRxiv. 2024 Mar 27:2024.03.25.586705. doi: 10.1101/2024.03.25.586705.

Abstract

Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO conditions; this compartmentalization appears to be a component of the CO Concentrating Mechanism (CCM), which facilitates photosynthetic CO fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO (HC) and Low/Very Low CO (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.

摘要

细胞内超微结构的动态变化对于生物体适应环境条件的能力可能至关重要。微藻承担了全球约50%的光合作用,当细胞处于CO限制条件下时,它们会将核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)分隔到一种称为蛋白核的特殊结构中;这种分隔似乎是CO浓缩机制(CCM)的一个组成部分,当环境中无机碳(Ci)水平下降时,它有助于光合CO固定。在CO限制条件下,也观察到绿藻中线粒体空间分布的变化,尽管这种重组在CCM功能中的作用仍不清楚。我们使用绿藻来监测细胞在高CO(HC)和低/极低CO(LC/VLC)之间转换时线粒体膜的位置和超微结构变化。将细胞转移到VLC后,线粒体从中央位置移动到周边位置,楔入质膜和叶绿体包膜之间,并且线粒体膜排列成从细胞顶端延伸到基部的平行管状阵列。我们表明,这些超微结构变化需要蛋白质和RNA合成,在将细胞转移到VLC条件后的90分钟内发生,与CCM诱导相关,并受CCM主调节因子CIA5调控。线粒体膜的顶端-基部方向,而不是线粒体向细胞周边的移动,依赖于微管和参与膜-微管相互作用的MIRO1蛋白。此外,在适应VLC的细胞中阻断线粒体电子传递会降低细胞对无机碳的亲和力。总体而言,我们的结果表明,依赖CIA5的线粒体重新定位/重新定向在将细胞结构和能量学与CCM活动整合中发挥作用,并促使人们进一步探索细胞内结构在动态环境条件下如何影响适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c122/10996633/a55d7d805e02/nihpp-2024.03.25.586705v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验