Thapa Rajesh Bahadur, Motohka Takeshi, Watanabe Manabu, Shimada Masanobu
Earth Observation Research Center, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 Japan.
Carbon Balance Manag. 2015 Sep 17;10:23. doi: 10.1186/s13021-015-0034-5. eCollection 2015 Dec.
Efforts to reduce emissions from deforestation and forest degradation in tropical Asia require accurate high-resolution mapping of forest carbon stocks and predictions of their likely future variation. Here we combine radar and LiDAR with field measurements to create a high-resolution aboveground forest carbon stock (AFCS) map and use spatial modeling to present probable future AFCS changes for the Riau province of central Sumatra.
Our map provides spatially explicit estimates of the AFCS with an accuracy of ±23.5 Mg C ha. According to this map, the natural forests in the province currently store 265 million Mg C, with a density of 72 Mg C ha, as aboveground biomass. Using a spatially explicit modeling technique we derived time-series AFCS maps up to the year 2030 under three forest policy scenarios: business as usual, conservation, and concession. The spatial patterns of AFCS and their trends under different scenarios vary on a local scale, and some areas are highlighted that are at eminent risk of carbon emission. Based on the business as usual scenario, the current AFCS could decrease by 75 %, which may lead to the release of 747 million Mg CO. The other two scenarios, conservation and concession, suggest the risk reductions by 11 and 59 %, respectively.
The time-series AFCS maps provide spatially explicit scenarios of changes in AFCS. These data may aid in planning Reducing Emissions from Deforestation and forest Degradation in developing countries projects in the study area, and stimulate the development of AFCS maps for other regions of tropical Asia.
在亚洲热带地区,为减少森林砍伐和森林退化所产生的排放,需要对森林碳储量进行精确的高分辨率测绘,并预测其未来可能的变化。在此,我们将雷达和激光雷达与实地测量相结合,以创建高分辨率的地上森林碳储量(AFCS)地图,并利用空间建模来呈现苏门答腊岛中部廖内省未来AFCS可能的变化情况。
我们的地图提供了AFCS的空间明确估计值,精度为±23.5 Mg C ha。根据该地图,该省的天然林目前储存着2.65亿Mg C,地上生物量密度为72 Mg C ha。我们使用空间明确建模技术,在三种森林政策情景下得出了直至2030年的AFCS时间序列地图:照常营业、保护和特许权。不同情景下AFCS的空间格局及其趋势在局部尺度上有所不同,并突出显示了一些碳排放风险极高的区域。基于照常营业情景,当前的AFCS可能会减少75%,这可能导致7.47亿Mg CO的排放。另外两种情景,即保护和特许权情景,分别表明风险降低了11%和59%。
AFCS时间序列地图提供了AFCS变化的空间明确情景。这些数据可能有助于规划研究区域内发展中国家的减少森林砍伐和森林退化所致排放量项目,并推动为亚洲热带其他地区绘制AFCS地图。