Suppr超能文献

基于共焦角膜地形图和眼前节光学相干断层扫描仪的人工神经网络自动检测圆锥角膜

Artificial Neural Network for Automated Keratoconus Detection Using a Combined Placido Disc and Anterior Segment Optical Coherence Tomography Topographer.

机构信息

Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain.

Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain.

出版信息

Transl Vis Sci Technol. 2024 Apr 2;13(4):13. doi: 10.1167/tvst.13.4.13.

Abstract

PURPOSE

To assess the efficacy of an automated program for keratoconus and keratoconus suspect detection based on corneal measurements provided by a combined Placido disc and anterior segment optical coherence tomography (OCT) topographer.

METHODS

In a multicentric cross-sectional study, an artificial neural network (ANN) was created using 6677 eyes from an equal number of patients (classified as 2663 normal eyes, 1616 keratoconus eyes, 210 keratoconus suspect eyes, 1519 myopic postoperative eyes, and 669 abnormal eyes). Each group was randomly divided into a training set (70% of the dataset) and a validation set (the remaining 30%). A multilayer perceptron network with a backpropagation learning algorithm was developed for the study. Indexes used to train the ANN were based on curvature and elevation of both the anterior and posterior corneal surfaces and the new corneal OCT indexes-based on corneal, stromal, and epithelial thicknesses.

RESULTS

For keratoconus detection, our ANN showed an accuracy of 98.6%, precision of 96%, recall of 97.9%, and F1-score of 96.9%. For keratoconus suspect detection, our ANN showed an accuracy of 98.5%, precision of 83.6%, recall of 69.7%, and F1-score of 76%.

CONCLUSIONS

Compared to previous literature, the addition of new OCT-based epithelial and stromal thickness indexes improves ANN detection capacity of keratoconus suspect eyes. For already stablished keratoconus our ANN detection capacity is excellent, but equivalent to previous evidence without incorporating such new OCT-based indexes.

TRANSLATIONAL RELEVANCE

OCT-based epithelial and stromal thickness indexes improve ANN detection capacity of keratoconus on its early stages.

摘要

目的

评估一种基于角膜共焦显微镜和眼前节光学相干断层扫描(OCT)地形图提供的角膜测量值的自动圆锥角膜和疑似圆锥角膜检测程序的疗效。

方法

在一项多中心横断面研究中,使用来自相同数量患者(分为 2663 只正常眼、1616 只圆锥角膜眼、210 只圆锥角膜疑似眼、1519 只近视术后眼和 669 只异常眼)的 6677 只眼创建了一个人工神经网络(ANN)。每个组随机分为训练集(数据集的 70%)和验证集(其余 30%)。研究中开发了一种具有反向传播学习算法的多层感知器网络。用于训练 ANN 的指标基于前、后角膜表面的曲率和高度以及新的角膜 OCT 指标,基于角膜、基质和上皮厚度。

结果

对于圆锥角膜的检测,我们的 ANN 显示出 98.6%的准确率、96%的精度、97.9%的召回率和 96.9%的 F1 评分。对于疑似圆锥角膜的检测,我们的 ANN 显示出 98.5%的准确率、83.6%的精度、69.7%的召回率和 76%的 F1 评分。

结论

与以前的文献相比,增加新的基于 OCT 的上皮和基质厚度指标可提高 ANN 对疑似圆锥角膜眼的检测能力。对于已经确诊的圆锥角膜,我们的 ANN 检测能力非常出色,但与以前的证据相当,而不包括这些新的基于 OCT 的指标。

翻译

Wenbin Zhang, MD, PhD,1*, Jian Wang, MD, PhD,2*, Qing Li, MD, PhD,3 Lei Wang, MD, PhD,4 Yonghong Yan, MD, PhD,5 and Ying Li, MD, PhD1. 1Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; 2Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; 3Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China; 4Department of Ophthalmology, Xiamen Eye Center, Xiamen University, Xiamen, China; 5Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7324/11005070/e58dca253d9b/tvst-13-4-13-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验