Suppr超能文献

一种高效去除 DICOM 元数据和已烧入像素文本的方法。

A Method for Efficient De-identification of DICOM Metadata and Burned-in Pixel Text.

机构信息

Department of Radiology, Duke University, Durham, NC, USA.

School of Medicine, Duke University, Durham, NC, USA.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):1-7. doi: 10.1007/s10278-024-01098-7. Epub 2024 Apr 8.

Abstract

De-identification of DICOM images is an essential component of medical image research. While many established methods exist for the safe removal of protected health information (PHI) in DICOM metadata, approaches for the removal of PHI "burned-in" to image pixel data are typically manual, and automated high-throughput approaches are not well validated. Emerging optical character recognition (OCR) models can potentially detect and remove PHI-bearing text from medical images but are very time-consuming to run on the high volume of images found in typical research studies. We present a data processing method that performs metadata de-identification for all images combined with a targeted approach to only apply OCR to images with a high likelihood of burned-in text. The method was validated on a dataset of 415,182 images across ten modalities representative of the de-identification requests submitted at our institution over a 20-year span. Of the 12,578 images in this dataset with burned-in text of any kind, only 10 passed undetected with the method. OCR was only required for 6050 images (1.5% of the dataset).

摘要

DICOM 图像去识别是医学图像研究的一个重要组成部分。虽然已经有许多成熟的方法可以安全地去除 DICOM 元数据中的保护健康信息(PHI),但去除图像像素数据中“嵌入”的 PHI 的方法通常是手动的,并且自动化的高通量方法尚未得到很好的验证。新兴的光学字符识别(OCR)模型可以从医学图像中检测和去除包含 PHI 的文本,但在典型的研究中处理大量图像时非常耗时。我们提出了一种数据处理方法,该方法可以对所有图像进行元数据去识别,并结合一种有针对性的方法,仅对有高概率嵌入文本的图像应用 OCR。该方法在一个包含 415182 张图像的数据集上进行了验证,这些图像代表了我们机构在 20 年期间提交的去识别请求的 10 种模态。在这个包含任何类型的嵌入文本的 12578 张图像中,只有 10 张未被该方法检测到。仅需要对 6050 张图像(占数据集的 1.5%)进行 OCR。

相似文献

1
A Method for Efficient De-identification of DICOM Metadata and Burned-in Pixel Text.
J Imaging Inform Med. 2024 Oct;37(5):1-7. doi: 10.1007/s10278-024-01098-7. Epub 2024 Apr 8.
2
Identification and classification of DICOM files with burned-in text content.
Int J Med Inform. 2019 Jun;126:128-137. doi: 10.1016/j.ijmedinf.2019.02.011. Epub 2019 Mar 1.
3
Automated selection of abdominal MRI series using a DICOM metadata classifier and selective use of a pixel-based classifier.
Abdom Radiol (NY). 2024 Oct;49(10):3735-3746. doi: 10.1007/s00261-024-04379-5. Epub 2024 Jun 11.
4
De-identification of Medical Images with Retention of Scientific Research Value.
Radiographics. 2015 May-Jun;35(3):727-35. doi: 10.1148/rg.2015140244.
5
Anonymization of DICOM electronic medical records for radiation therapy.
Comput Biol Med. 2014 Oct;53:134-40. doi: 10.1016/j.compbiomed.2014.07.010. Epub 2014 Jul 26.
6
Radtools: R utilities for convenient extraction of medical image metadata.
F1000Res. 2018 Dec 24;7. doi: 10.12688/f1000research.17139.3. eCollection 2018.
7
DicomBrowser: software for viewing and modifying DICOM metadata.
J Digit Imaging. 2012 Oct;25(5):635-45. doi: 10.1007/s10278-012-9462-x.
8
Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.
J Digit Imaging. 2018 Aug;31(4):568-577. doi: 10.1007/s10278-017-0045-8.
10
Providing integrity, authenticity, and confidentiality for header and pixel data of DICOM images.
J Digit Imaging. 2015 Apr;28(2):179-87. doi: 10.1007/s10278-014-9734-8.

引用本文的文献

本文引用的文献

1
A De-Identification Pipeline for Ultrasound Medical Images in DICOM Format.
J Med Syst. 2017 May;41(5):89. doi: 10.1007/s10916-017-0736-1. Epub 2017 Apr 13.
2
Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy.
Eur Radiol. 2015 Dec;25(12):3685-95. doi: 10.1007/s00330-015-3794-0. Epub 2015 Jun 3.
3
Beyond the DICOM header: additional issues in deidentification.
AJR Am J Roentgenol. 2014 Dec;203(6):W658-64. doi: 10.2214/AJR.13.11789.
4
Introduction to the DICOM standard.
Eur Radiol. 2002 Apr;12(4):920-7. doi: 10.1007/s003300101100. Epub 2001 Sep 15.
5
Understanding and using DICOM, the data interchange standard for biomedical imaging.
J Am Med Inform Assoc. 1997 May-Jun;4(3):199-212. doi: 10.1136/jamia.1997.0040199.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验