Monteiro Eriksson, Costa Carlos, Oliveira José Luís
University of Aveiro, DETI/IEETA, Aveiro, Portugal.
J Med Syst. 2017 May;41(5):89. doi: 10.1007/s10916-017-0736-1. Epub 2017 Apr 13.
Clinical data sharing between healthcare institutions, and between practitioners is often hindered by privacy protection requirements. This problem is critical in collaborative scenarios where data sharing is fundamental for establishing a workflow among parties. The anonymization of patient information burned in DICOM images requires elaborate processes somewhat more complex than simple de-identification of textual information. Usually, before sharing, there is a need for manual removal of specific areas containing sensitive information in the images. In this paper, we present a pipeline for ultrasound medical image de-identification, provided as a free anonymization REST service for medical image applications, and a Software-as-a-Service to streamline automatic de-identification of medical images, which is freely available for end-users. The proposed approach applies image processing functions and machine-learning models to bring about an automatic system to anonymize medical images. To perform character recognition, we evaluated several machine-learning models, being Convolutional Neural Networks (CNN) selected as the best approach. For accessing the system quality, 500 processed images were manually inspected showing an anonymization rate of 89.2%. The tool can be accessed at https://bioinformatics.ua.pt/dicom/anonymizer and it is available with the most recent version of Google Chrome, Mozilla Firefox and Safari. A Docker image containing the proposed service is also publicly available for the community.
医疗机构之间以及从业者之间的临床数据共享常常受到隐私保护要求的阻碍。在数据共享是各方建立工作流程基础的协作场景中,这个问题至关重要。对存储在DICOM图像中的患者信息进行匿名化处理需要精心的流程,这比简单地对文本信息进行去识别要复杂一些。通常,在共享之前,需要手动去除图像中包含敏感信息的特定区域。在本文中,我们提出了一种用于超声医学图像去识别的流程,它作为一种免费的匿名化REST服务提供给医学图像应用程序,以及一种软件即服务,以简化医学图像的自动去识别,最终用户可以免费使用。所提出的方法应用图像处理功能和机器学习模型来实现医学图像匿名化的自动系统。为了进行字符识别,我们评估了几种机器学习模型,其中卷积神经网络(CNN)被选为最佳方法。为了评估系统质量,人工检查了500张处理后的图像,匿名化率为89.2%。该工具可在https://bioinformatics.ua.pt/dicom/anonymizer上访问,并且在最新版本的谷歌浏览器、火狐浏览器和Safari浏览器上均可使用。一个包含所提出服务的Docker镜像也已向社区公开发布。